Chitosan nanoparticles encapsulating turmeric (Curcuma longa) extract for the management of Streptococcus agalactiae-associated breast cancer

##plugins.themes.bootstrap3.article.main##

CLETUS ANES UKWUBILE
NNAMDI DAVID MENKITI
OTALU OTALU JR

Abstract

Abstract. Ukwubile CA, Menkiti ND, Otalu Jr O. 2023. Chitosan nanoparticles encapsulating turmeric (Curcuma longa) extract for the management of Streptococcus agalactiae-associated breast cancer. Asian J Nat Prod Biochem 23: 19-26. Breast cancer associated with Streptococcus agalactiae Lehmann & Neumann, 1896 infection poses complex therapeutic challenges, often exacerbating inflammatory responses and impacting tumor progression. Despite the use of various anticancer drugs, the development of resistance by cancer cells against these is still prevalent, hence, the need for an appropriate drug delivery strategy in the form of chitosan nanoparticles for effective treatment against breast cancer. This study investigates the antibacterial and anticancer effects of turmeric (Curcuma longa L.) extract encapsulated in chitosan nanoparticles (NPs) against S. agalactiae-associated breast cancer, assessing its influence on key bacterial and cancer biomarkers. Curcuma longa extract-loaded chitosan NPs were synthesized via ionic gelation and characterized for stability and particle size. Breast cancer cells and S. agalactiae cultures were treated with these NPs, and bacterial growth inhibition assays quantified antibacterial activity. Anticancer effects were evaluated using cell viability assays and measurements of inflammatory and oxidative stress biomarkers, including Tumor Necrotic Factor-alpha (TNF-a), interleukin-1beta (1L-1B), cyclooxygenase-2 (COX-) and Reactive Oxygen Species (ROS) levels. Curcuma longa-loaded chitosan NPs exhibited a significant antibacterial effect, reducing S. agalactiae counts by 87% compared to the control (p < 0.01). In cancer cells, the NPs decreased TNF-? and IL-1? levels by 52% and 48%, respectively, and significantly reduced COX-2 expression by 43% (p < 0.01). Additionally, ROS levels in treated cancer cells were reduced by 60% compared to control, highlighting the potent antioxidative activity of the NPs. These findings demonstrated the enhanced therapeutic potential of C. longa-loaded chitosan NPs for combating infection-associated breast cancer. The encapsulation of C. longa extract in chitosan NPs significantly improves antibacterial and anticancer activities, offering a dual-targeted approach that holds promise for treating S. agalactiae-associated breast cancer.

##plugins.themes.bootstrap3.article.details##

References
Akinduti, P. A., Emoh-Robinson, V., Obamoh-Triumphant, H. F., Obafemi, Y. D., & Banjo, T. T. (2022). Antibacterial activities of plant leaf extracts against multi-antibiotic resistant Staphylococcus aureus associated with skin and soft tissue infections. BMC Complementary Medicine and Therapies, 22(1), 1–11. https://doi.org/10.1186/s12906-022-03527-y
Albaqami, J. J., Hamdi, H., Narayanankutty, A., Visakh, N. U., Sasidharan, A., Kuttithodi, A. M., Famurewa, A. C., & Pathrose, B. (2022). Chemical Composition and Biological Activities of the Leaf Essential Oils of Curcuma longa, Curcuma aromatica and Curcuma angustifolia. Antibiotics, 11(11), 1–14. https://doi.org/10.3390/antibiotics11111547
Alfuraydi, A. A., Aziz, I. M., & Almajhdi, F. N. (2024a). Assessment of antioxidant, anticancer, and antibacterial activities of the rhizome of ginger (Zingiber officinale). Journal of King Saud University - Science, 36(3), 103112. https://doi.org/10.1016/j.jksus.2024.103112
Alfuraydi, A. A., Aziz, I. M., & Almajhdi, F. N. (2024b). Assessment of antioxidant, anticancer, and antibacterial activities of the rhizome of ginger (Zingiber officinale). Journal of King Saud University - Science, 36(3), 103112. https://doi.org/10.1016/j.jksus.2024.103112
Amalraj, A., Pius, A., Gopi, S., & Gopi, S. (2017). Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives – A review. Journal of Traditional and Complementary Medicine, 7(2), 205–233. https://doi.org/10.1016/j.jtcme.2016.05.005
Ansori, Manual, U., Brämswig, K., Ploner, F., Martel, A., Bauernhofer, T., Hilbe, W., Kühr, T., Leitgeb, C., Mlineritsch, B., Petzer, A., Seebacher, V., Stöger, H., Girschikofsky, M., Hochreiner, G., Ressler, S., Romeder, F., Wöll, E., Brodowicz, T., … Baker, D. (2022). No ????????????????????? ?????????????????Title. Science, 7(1), 1–8. http://link.springer.com/10.1007/s00232-014-9701-9%0Ahttp://link.springer.com/10.1007/s00232-014-9700-x%0Ahttp://dx.doi.org/10.1016/j.jmr.2008.11.017%0Ahttp://linkinghub.elsevier.com/retrieve/pii/S1090780708003674%0Ahttp://www.ncbi.nlm.nih.gov/pubmed/1191
Athar, N., Naz, G., Ramzan, M., Shahid Sadiq, M., Arshad, M., Muhammad Adeel Sharif, H., Hendi, A. A., Almoneef, M. M., & Awad, M. A. (2024). Enhanced sunlight-driven photocatalysis owing to synergetic effect of gold nanoparticles-incorporated ZnO/rGO ternary heterostructures. Journal of King Saud University - Science, 36(3), 103104. https://doi.org/10.1016/j.jksus.2024.103104
Bisen, P. (2014). Microbial Staining. Microbes in Practice, September 2014, 139–155. https://www.researchgate.net/publication/279865907
Cartwright, I. M., Liu, X., Zhou, M., Li, F., & Li, C. Y. (2017). Essential roles of caspase-3 in facilitating myc-induced genetic instability and carcinogenesis. ELife, 6, 1–14. https://doi.org/10.7554/eLife.26371
Deng, Q. Y., Zhou, C. R., & Luo, B. H. (2006). Preparation and characterization of chitosan nanoparticles containing lysozyme. Pharmaceutical Biology, 44(5), 336–342. https://doi.org/10.1080/13880200600746246
El-Zehery, H. R. A., Zaghloul, R. A., Abdel-Rahman, H. M., Salem, A. A., & El-Dougdoug, K. A. (2022). Novel strategies of essential oils, chitosan, and nano- chitosan for inhibition of multi-drug resistant: E. coli O157:H7 and Listeria monocytogenes. Saudi Journal of Biological Sciences, 29(4), 2582–2590. https://doi.org/10.1016/j.sjbs.2021.12.036
Herdiana, Y., Wathoni, N., Shamsuddin, S., & Muchtaridi, M. (2022). Drug release study of the chitosan-based nanoparticles. Heliyon, 8(1), e08674. https://doi.org/10.1016/j.heliyon.2021.e08674
Jafernik, K., ?adniak, A., Blicharska, E., Czarnek, K., Ekiert, H., Wi?cek, A. E., & Szopa, A. (2023). Chitosan-Based Nanoparticles as Effective Drug Delivery Systems—A review. Molecules, 28(4), 1–17. https://doi.org/10.3390/molecules28041963
Jha, R., & Mayanovic, R. A. (2023). A Review of the Preparation, Characterization, and Applications of Chitosan Nanoparticles in Nanomedicine. Nanomaterials, 13(8). https://doi.org/10.3390/nano13081302
Khalid, M., Amayreh, M., Sanduka, S., Salah, Z., Al-Rimawi, F., Al-Mazaideh, G. M., Alanezi, A. A., Wedian, F., Alasmari, F., & Faris Shalayel, M. H. (2022). Assessment of antioxidant, antimicrobial, and anticancer activities of Sisymbrium officinale plant extract. Heliyon, 8(9), e10477. https://doi.org/10.1016/j.heliyon.2022.e10477
Khan, I., Rahman, H., Abd El-Salam, N. M., Tawab, A., Hussain, A., Khan, T. A., Khan, U. A., Qasim, M., Adnan, M., Azizullah, A., Murad, W., Jalal, A., Muhammad, N., & Ullah, R. (2017). Punica granatum peel extracts: HPLC fractionation and LC MS analysis to quest compounds having activity against multidrug resistant bacteria. BMC Complementary and Alternative Medicine, 17(1), 1–6. https://doi.org/10.1186/s12906-017-1766-4
L, W. S. (2011). eval_uation of Antimicrobial Efficacy of Flavonoids of. Indian Journal of Pharmaceutical Sciences, 73(4), 473–478.
Li, J., Cai, C., Li, J., Li, J., Li, J., Sun, T., Wang, L., Wu, H., & Yu, G. (2018). Chitosan-based nanomaterials for drug delivery. Molecules, 23(10), 1–26. https://doi.org/10.3390/molecules23102661
Lukiati, B., Sulisetijono, Nugrahaningsih, & Masita, R. (2020). Determination of total phenol and flavonoid levels and antioxidant activity of methanolic and ethanolic extract zingiber officinale rosc var. rubrum rhizome. AIP Conference Proceedings, 2231. https://doi.org/10.1063/5.0002657
Malviya, S., Malviya, N., Joshi, A., Johariya, V., & Saxena, R. (2023). Medicinal Plants and Cancer Chemoprevention. Medicinal Plants and Cancer Chemoprevention, 9(7), 1–232. https://doi.org/10.1201/9781003251712
Mohamad, S., Ismail, N. N., Parumasivam, T., Ibrahim, P., Osman, H., & A. Wahab, H. (2018). Antituberculosis activity, phytochemical identification of Costus speciosus (J. Koenig) Sm., Cymbopogon citratus (DC. Ex Nees) Stapf., and Tabernaemontana coronaria (L.) Willd. and their effects on the growth kinetics and cellular integrity of Mycobacteri. BMC Complementary and Alternative Medicine, 18(1), 1–14. https://doi.org/10.1186/s12906-017-2077-5
Mongalo, N., Soyingbe, O., & Makhafola, T. (2019). Antimicrobial, cytotoxicity, anticancer and antioxidant activities of Jatropha zeyheri Sond. roots (Euphorbiaceae). Asian Pacific Journal of Tropical Biomedicine, 9(7), 307–314. https://doi.org/10.4103/2221-1691.261822
Nanoparticles, S., & Biological, U. (2019). Synthesizing Nanoparticles Using Biological Systems Environmental Challenges by Nanoparticles Plant Sources of Metallic Nanoparticles Synthesizing Metallic Nanoparticles from Microbial. 1–4.
Ngulde, S. I., Sandabe, U. K., Abounader, R., Zhang, Y., & Hussaini, I. M. (2020). Activities of Some Medicinal Plants on the Proliferation and Invasion of Brain Tumor Cell Lines. 2020.
Ojo, O. A., Adeyemo, T. R., Rotimi, D., Batiha, G. E. S., Mostafa-Hedeab, G., Iyobhebhe, M. E., Elebiyo, T. C., Atunwa, B., Ojo, A. B., Lima, C. M. G., & Conte-Junior, C. A. (2022a). Anticancer Properties of Curcumin Against Colorectal Cancer: A Review. Frontiers in Oncology, 12(April), 1–13. https://doi.org/10.3389/fonc.2022.881641
Ojo, O. A., Adeyemo, T. R., Rotimi, D., Batiha, G. E. S., Mostafa-Hedeab, G., Iyobhebhe, M. E., Elebiyo, T. C., Atunwa, B., Ojo, A. B., Lima, C. M. G., & Conte-Junior, C. A. (2022b). Anticancer Properties of Curcumin Against Colorectal Cancer: A Review. Frontiers in Oncology, 12(April), 1–13. https://doi.org/10.3389/fonc.2022.881641
Oyinlola, K. A., Ogunleye, G. E., Balogun, A. I., & Joseph, O. (2024). Comparative study: Garlic, ginger and turmeric as natural antimicrobials and bioactives. South African Journal of Science, 120(1–2), 1–7. https://doi.org/10.17159/sajs.2024/14170
Porter, A. G., & Jänicke, R. U. (1999). Emerging roles of caspase-3 in apoptosis. Cell Death and Differentiation, 6(2), 99–104. https://doi.org/10.1038/sj.cdd.4400476
Ralte, L., Khiangte, L., Thangjam, N. M., Kumar, A., & Singh, Y. T. (2022). GC–MS and molecular docking analyses of phytochemicals from the underutilized plant, Parkia timoriana revealed candidate anti-cancerous and anti-inflammatory agents. Scientific Reports, 12(1), 1–21. https://doi.org/10.1038/s41598-022-07320-2
Tomeh, M. A., Hadianamrei, R., & Zhao, X. (2019). A review of curcumin and its derivatives as anticancer agents. International Journal of Molecular Sciences, 20(5). https://doi.org/10.3390/ijms20051033
Ugorji, O. L., Onyishi, I. V., Onwodi, J. N., Adeyeye, C. M., Ukachukwu, U. G., & Obitte, N. C. (2024). Solubility enhancing lipid-based vehicles for artemether and lumefantrine destined for the possible treatment of induced malaria and inflammation: in vitro and in vivo eval_uations. Beni-Suef University Journal of Basic and Applied Sciences, 13(1). https://doi.org/10.1186/s43088-023-00446-w
Van Haaften, C., Duke, C. C., Weerheim, A. M., Smit, N. P. M., Van Haard, P. M. M., Darroudi, F., & Trimbos, B. J. M. Z. (2011). Potent cytotoxic effects of Calomeria amaranthoides on ovarian cancers. Journal of Experimental and Clinical Cancer Research, 30(1), 29. https://doi.org/10.1186/1756-9966-30-29
Veselov, V. V., Nosyrev, A. E., Jicsinszky, L., Alyautdin, R. N., & Cravotto, G. (2022). Targeted Delivery Methods for Anticancer Drugs. Cancers, 14(3). https://doi.org/10.3390/cancers14030622
Zielinska-Blizniewska, H., Sitarek, P., Merecz-Sadowska, A., Malinowska, K., Zajdel, K., Jablonska, M., Sliwinski, T., & Zajdel, R. (2019). Plant extracts and reactive oxygen species as two counteracting agents with anti- and pro-obesity properties. International Journal of Molecular Sciences, 20(18), 1–30. https://doi.org/10.3390/ijms20184556