Colorimetric estimation of vancomycin using modified silver nanoparticles and implementing it on various types of pharmaceutical perpetrations

##plugins.themes.bootstrap3.article.main##

MOHAMMED AHMED AL-KARAMI
MOHAUMAN MOHAMMAD AL-RUFAIE

Abstract

Abstract. Al-Karami MA, Al-Rufaie MM. 2022. Colorimetric estimation of vancomycin using modified silver nanoparticles and implementing it on various types of pharmaceutical perpetrations. Nusantara Bioscience 14: 70-77. The current research proposes a simple, quick, and sensitive method for determining the pure state of vancomycin (Van) and several of its medicinal formulations. The antibiotic (Van) effectively reduces the ore mineral salt from silver nitrate (Ag+) to silver nanoparticles. Polyvinylpyrrolidone was used as a stabilizer in a medium using sodium hydroxide as a base. The highest absorption of the vancomycin oxidation-reduction product occurs at 440 nm. The calibration curve is measured, and the following data is generated, indicating that the Beer-Lambert Law is followed within the concentration range of 2.5-70 parts per million. Sandal's molar absorptivity was 2.0043 x 104 L/mol.cm, and its sensitivity was 0.0723 g/cm2. The correlation coefficient was 0.9987, and the standard deviation rate was 0.402%. The biological influence of several Gram-positive and Gram-negative bacteria was researched, and the efficacy of the samples prepared on these bacteria has shown to be promising.

2019-01-01

##plugins.themes.bootstrap3.article.details##

References
Abdellatif AAH, Mohammed HA, Khan RA, Singh V, Bouazzaoui A, Yusuf M, Akhtar N, Khan M, Al-Subaiyel A, Mohammed SAA, Al-Omar MS. 2021. Nano-scale delivery: A comprehensive review of nano-structured devices, preparative techniques, site-specificity designs, biomedical applications, commercial products, and references to safety, cellular uptake, and organ toxicity. J Nanotechnol Rev 10: 1493-1559. DOI: 10.1515/ntrev-2021-0096.
Afshari A, Schrenzel J, Ieven M, Garbarth S. 2012. Bench-to-bedside review rapid molecular diagnostics for bloodstream infection-a new frontier. Crit Care 16 (3): 222. DOI: 10.1186/cc11202.
Balachandar R, Gurumoorthy P, Karmegam N, Barabadi H, Subbaiya R, Anand K, Boomi P, Saravanan M. 2019. Plant-mediated synthesis characterization and bactericidal potential of emerging silver nanoparticles using stem extract of Phyllanthus pinnatus: A recent advance in phytonanotechnology. J Cluster Sci 30 (6): 1481-1488. DOI: 10.1007/s10876-019-01591-y.
Bhosale RS, Hajare KY, Mulay B, Mujumdar S, Kothawade M. 2015. Biosynthesis, characterization and study of antimicrobial effect of silver nanoparticles by Actinomycetes spp. Intl J Curr Microbiol Appl Sci 2: 144-151.?
Bourbeau PP, Ledeboer NA. 2013. Automation in clinical microbiology. J Clin Microbiol 51 (6): 1658-1665. DOI: 10.1128/JCM.00301-13.
Christian GD. 2004. Analytical Chemistry. 6th ed. John Wiley & Sons, Inc. Hoboken.
Deepthi RS, Narasimha RG. 2013. Antimicrobial activity of mangrove plant Avicennia officinalis (Lam. Briqvet) on selected pathogens. Res J Pharm Biol Chem Sci 4 (3): 335-341.
Ghorbani HR. 2017. Biosynthesis of nanosilver particles using extract of Salmonella typhimurium. Arab J Chem 10: S1699-S1702. DOI: 10.1016/j.arabjc.2013.06.017.
Gupta P, Khare V, Kumar D, Ahmad A, Banerjee G, Singh M. 2015. Comparative evaluation of disc diffusion and E-test with broth microdilution in susceptibility testing of amphotericin B, voriconazole and caspofungin against clinical Aspergillus isolates. J Clin Diagn Res 9 (1): DC04-DC07. DOI: 10.7860/JCDR/2015/10467.5395.
Gurunathan S, Han JW, Kwon DN, Kim JH. 2014. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Res Lett 9 (1): 1-17.? DOI: 10.1186/1556-276X-9-373.
Hasan MA. 2013. Spectrophotometric determination of catecholamines via charge transfer complexation with bromanil, applications to catecholamine drug formulations. J Univ Zakho 1 (A1): 253-260.
Hwang IS, Hwang JH, Choi H, Kim KJ, Lee DG. 2012. Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. J Med Microbiol 61 (12): 1719-1726.? DOI: 10.1099/jmm.0.047100-0.
Kamalha E, Shi X, Mwasiagi JI, Zeng Y. 2012. Nanotechnology and carbon nanotubes; A review of potential in drug delivery. Macromol Res 20 (9): 891-898. DOI: 10.1007/s13233-012-0134-y
Kavitha R, Francisca P, Auxilia A. 2019. Biosynthesis, characterization and antibacterial effect of plant-mediated silver nanoparticles from Adenanthera pavonina. JETIR 6 (2): 2349-5162.
Luo L, Huang Q, Jin B, Chai Z, Guo Z, Peng R. 2020. Study on the stability effect and mechanism of aniline-fullerene stabilizers on nitrocellulose based on the isothermal thermal decomposition. State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Sichuan, Mianyang, 621010, China. Version of Record. DOI: 10.1016/j.polymdegradstab.2020.109221.
Miller JM, Binnicker MJ, Campbell S, Carroll KC, Chapin KC, Gilligan PH, Gonzalez MD, Jerris RC, Kehl SC, Patel R, Pritt BS, Richter SS, Robinson-Dunn B, Schwartzman JD, Snyder JW, Telford S, Theel ES, Thomson Jr RB, Weinstein MP, Yao JD. 2018. A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2018 update by the infectious diseases society of America and the American Society for microbiology. Clin Infect Dis 67: 813-816.? DOI: 10.1093/cid/ciy381.
Moffat AC, Osselton MD, Widdop B, Watts J. 2012. Clarke's analysis of drugs and poisons. Fourth Edition. J Anal Toxicol 36 (5): 357. DOI: 10.1093/jat/bks023.
Mulia DS, Isnansetyo A, Pratiwi R, Asmara W. 2021. Antibiotic resistance of Aeromonas spp. isolated from diseased walking catfish (Clarias sp.). Biodiversitas 22: 4839-4846. DOI: 10.13057/biodiv/d221117.
Nair M, Best SM, Cameron RE. 2020. Crosslinking collagen constructs: Achieving cellular selectivity through modifications of physical and chemical properties. Appl Sci 10: 6911. DOI: 10.3390/app10196911.
Nikparast Y, Mahsa S. 2018. Synergistic effect between phyto-syntesized silver nanoparticles and ciprofloxacin antibiotic on some pathogenic bacterial strains. J Med Bacteriol 7 (1-2): 36-43.
Olurinola PF. 1996. A Laboratory Manual of Pharmaceutical Microbiology. Idu, Abuja, Nigeria.
Parlinska-Wojtan M. 2018. Green synthesis and antibacterial effects of aqueous colloidal solutions of silver nanoparticles using clove eugenol green synthesis and characterization of antibacterial effects of silver. Appl Organomet Chem 32 (4): e4276. DOI: 10.1002/aoc.4276.
Patil MP, Kim GD. 2018. Marine microorganisms for synthesis of metallic nanoparticles and their biomedical applications. Colloids Surf B Biointerf 172: 487-495. DOI: 10.1016/j.colsurfb.2018.09.007.
Prasad GS, Sailam KS. 2019. Pharmaceutical Microbiology: A Laboratory Manual. PharmaMed Press / BSP Books, Rpt.
Ramalivhana JN, Obi CL, Samie A, Iweriebor BC, Uaboi-Egbenni P, Idiaghe JE, Momba MNB. 2014. Antibacterial activity of honey and medicinal plant extracts against Gram-negative microorganisms. Afr J Biotechnol 13 (4): 616-625. DOI: 10.5897/AJB11.892.
Rus I, Tertis M, Cristea C, Robert S. 2021. Modern analytical techniques for drug delivery systems characterization. Curr Anal Chem 17: 1064-1073. DOI: 10.2174/1573411016999200612100927.
Saleh TA, Al-Shalalfeh MM, Al-Saadi AA. 2017. Silver nanoparticles for detection of methimazole by surface-enhanced raman spectroscopy. Mater Res Bull 91: 173-178. DOI: 10.1016/j.materresbull.2017.03.041.
Varadharaj V, Ramaswamy A, Sakthivel R. Subbaiya R, Barabadi H, Chandrasekaran M, Saravanan M. 2019. Antidiabetic and antioxidant activity of green synthesized starch nanoparticles: An in vitro study. J Cluster Sci 31: 1257-1266. DOI: 10.1007/s10876-019-01732-3.
Wang Y, Yang Y, Shi Y, Song H, Yu C. 2020. Antibiotic?free antibacterial strategies enabled by nanomaterials: progress and perspectives. Adv Mater 32: 1904106 DOI: 10.1002/adma.201904106.
Ziasistani M, Shakibaie MR, Kalantar-Neyestanaki D. 2019. Genetic characterization of two vancomycin-resistant Staphylococcus aureus isolates in Kerman, Iran. Infect Drug Resist 12: 1869-1875. DOI: 10.2147/IDR.S205596.