Diversity studies on insect pests of high altitudinal transitional zones of North-western Himalayas

##plugins.themes.bootstrap3.article.main##

PAWAN KUMAR
TAMANNA SINGH THAKUR
DEEPIKA
NEHA SHARMA

Abstract

Abstract. Kumar P, Thakur TS, Deepika, Sharma N. 2022. Diversity studies on insect pests of high altitudinal transitional zones of North-western Himalayas. Nusantara Bioscience 14: 203-210. Class Insecta constitute a major fauna and comprise many species of economic importance. Due to climate change and increase in temperature, many insect species are changing their habitat considerably and shifting their hosts, which leads to changes in the diversity of insect pests at different altitudinal gradients. High altitude forest cover is not large and massive as plains forest cover, but it supports some of the very important economical tree species like- Quercus sp., Himalayan Poplar, Betula sp., Abies pindrow (Royle ex D.Don) Royle, Juniper spp., Birdcherry, Maple, etc. The present study analyzed any change in insect pest incidences and diversity of pest species due to the change in host preferences or climatic patterns. The study was conducted at four selected sites viz. Rohtang area (Kullu Forest Division), Chanshal area (Rohru Forest Division), Sach area (Churah Forest Division), and Indrahar area (Dharamshala Forest Division) of high altitudinal transitional zones of Himachal Pradesh, India, to study insect pest diversity. A total of 32 insect species were recorded during the study period comprised of the insect orders viz., Coleoptera, Hymenoptera, Hemiptera, Orthoptera, Dermaptera, and Lepidoptera. The present investigation led to the finding that species of Coleoptera (beetles) were the most dominant insects attacking trees of the high altitudinal transitional zone, followed by Lepidoptera (Butterflies and moths) and Hemiptera (aphids).

2019-01-01

##plugins.themes.bootstrap3.article.details##

References
Anderson JT, Wadgymar SM. 2020. Climate change disrupts local adaptation and favours upslope migration. Ecol Lett 23 (1): 181-192. DOI: 10.1111/ele.13427.
Andrew NR, Hill SJ, Binns M, Bahar, MH, Ridley EV, Jung MP, Khusro M. 2013. Assessing insect responses to climate change: What are we testing for? Where should we be heading? PeerJ 1: e11. DOI: 10.7717/peerJ.11.
Arora GS. 1990. Collection and Preservation of Animals (Lepidoptera). Zoological Survey of India, Calcutta.
Bashir MA, Alvi AM, Rehmani MIA, Qasirani TB, Mahpara S, Tariq M. 2019. 46. Pollinators diversity for tomatoes crop under agro-forest ecosystem of Dera Ghazi Khan Punjab Pakistan. Pure Appl Biol 8 (2): 1487-1493. DOI: 10.19045/bspab.2019.80088.
Bista S, Thapa HB. 2012. Retrospective on forest insect pests of Nepal with reference to climate change. In Proceeding of International Conference on The Impacts of Climate Change to Forest Pests and Diseases in The Tropics.
Björkman C, Bylund H, Nilsson U, Nordlander G, Schroeder M. 2015. Forest management to mitigate insect damage in a changing climate: Possibilities and uncertainties. In: Björkman C, Niemelä J (Eds). Climate Change and Insect Pests. CABI, Wallingford. DOI: 10.1079/9781780643786.0000.
De Long JR, Sundqvist MK, Gundale MJ, Giesler R, Wardle DA. 2016. Effects of elevation and nitrogen and phosphorus fertilization on plant defence compounds in subarctic tundra heath vegetation. Funct Ecol 30 (2): 314-325. DOI: 10.1111/1365-2435.12493.
Diagne C, Leroy B, Vaissière AC, Gozlan RE, Roiz D, Jari? I, Courchamp F. 2021. High and rising economic costs of biological invasions worldwide. Nature 592 (7855): 571-576. DOI: 10.1038/s41586-021-03405-6.
Fajvan MA, Wood JM. 1996. Stand structure and development after gypsy moth defoliation in the Appalachian Plateau. For Ecol Manag 89 (1-3): 79-88. DOI: 10.1016/S0378-1127(96)03865-0.
González E, Salvo A, Valladares G. 2020. Insects moving through forest-crop edges: a comparison among sampling methods. J Insect Conserv 24 (2): 249-258. DOI: 10.1007/s10841-019-00201-6.
Guo F, Lenoir J, Bonebrake TC. 2018. Land-use change interacts with climate to determine elevational species redistribution. Nat Commun 9 (1): 1-7. DOI: 10.1038/s41467-018-03786-9.
Guo ZL, yuan ML. 2016. Research progress of mitochondrial genomes of Hemiptera insects. Scientia Sinica Vitae 46 (2): 151-166. DOI: 10.1360/N052015-00229.
Heidrich L, Bae S, Levick S, Seibold S, Weisser W, Krzystek P, Müller J. 2020. Heterogeneity–diversity relationships differ between and within trophic levels in temperate forests. Nat Ecol Evol 4 (9): 1204-1212. DOI: 10.1038/s41559-020-1245-z.
Hill MO. 1973. Diversity and evenness: A unifying notation and its consequences. Ecology 54 (2): 427-432. DOI: 10.2307/1934352.
Hotaling S, Finn DS, Joseph GJ, Weisrock DW, Jacobsen D. 2017. Climate change and alpine stream biology: Progress, challenges, and opportunities for the future. Biol Rev 92 (4): 2024-2045. DOI: 10.1111/brv.12319.
Jacobsen D. 2020. The dilemma of altitudinal shifts: Caught between high temperature and low oxygen. Front Ecol Environ 18 (4): 211-218. DOI: 10.1002/fee.2161.
Janes JK, Li Y, Keeling CI, Yuen MM, Boone CK, Cooke JE, Sperling FA. 2014. How the mountain pine beetle (Dendroctonus ponderosae) breached the Canadian Rocky Mountains. Mol Biol Evol 31 (7): 1803-1815. DOI: 10.1093/molbev/msu135.
Khan KA, Bashir MA, Mahmood R, Qadir ZA, Rafiq K, Khan MH, Ghramh HA. 2021. Foraging behavior of western honey bee (Apis mellifera) in different time intervals on Brassica campestris L. Fresenius Environ Bull 30 (3): 2607-2612.
Knuff AK, Staab M, Frey J, Dormann CF, Asbeck T, Klein AM. 2020. Insect abundance in managed forests benefits from multi-layered vegetation. Basic Appl Ecol 48: 124-135. DOI: 10.1016/.baae.2020.09.002.
Kumar P, Devi R, Mattu VK. 2016. Diversity and abundance of butterfly fauna (Insecta: Lepidoptera) of Subalpine area of Chanshal valley of District Shimla (Himachal Pradesh. J Entomol Zool Stud 4 (4): 243-247.
Kumar P, Kumar M, Thakur MS. 2015. Biodiversity and habitat association of Noctuid moths (Lepidoptera: Noctuidae) in various Chirpine forests of Himachal Pradesh. J Basic Appl Sci Aspects (JBASA).
Kumar P, Thakur S. 2014. Study on faunal diversity of butterflies in Triveni Mahadev (Himachal Pradesh). J Entomol Zool Stud 2 (5): 58-62.
Kumar P. 2016. Studies on seed borer, Plodia interpunctella Hubner (Lepidoptera: Pyralidae) infesting seeds of Chilgoza pine (Pinus gerardiana Wall.. Indian For 142 (4): 394-399.
Leidinger J, Blaschke M, Ehrhardt M, Fischer A, Gossner MM, Jung K, Weisser WW. 2021. Shifting tree species composition affects biodiversity of multiple taxa in Central European forests. For Ecol Manag 498: 119552. DOI: 10.1016/j.foreco.2021.119552.
Lovett GM, Canham CD, Arthur MA, Weathers KC, Fitzhugh RD. 2006. Forest ecosystem responses to exotic pests and pathogens in eastern North America. BioScience 56 (5): 395-405. DOI: 10.1641/0006-3568(2006)056[0395:fertep]2.0.co;2.
Lundgren J, McCravy K. 2011. Carabid beetles (Coleoptera: Carabidae) of the Midwestern United States: A review and synthesis of recent research. Terr Arthropod Rev 4 (2): 63-94. DOI: 10.1163/187498311X565606.
Makarova TN, Chernyshova LV, Bazhenova IA, Ulitina OS. 2022. The influence of natural climatic conditions on the species diversity of insects in the conditions of the southern forest-steppe zone of Chelyabinsk region. IOP Conf Ser: Earth Environ Sci 949: 012128. DOI: 10.1088/1755-1315/949/1/012128.
Martin EA, Reineking B, Seo B, Steffan-Dewenter I. 2013. Natural enemy interactions constrain pest control in complex agricultural landscapes. Proc Natl Acad Sci 110 (14): 5534-5539. DOI: 10.1073/pnas.1215725110.
McCravy KW. 2018. A review of sampling and monitoring methods for beneficial arthropods in agroecosystems. Insects 9 (4): 170. DOI: 10.3390/insects9040170.
McKernan C, Cooper DJ, Schweiger EW. 2018. Glacial loss and its effect on riparian vegetation of alpine streams. Freshw Biol 63 (6): 518-529. DOI: 10.1111/fwb.13088.
Mohammed C, Beadle C, Roux J, Rahayu S. 2012. Proceeding of International Conference on The Impacts of Climate Change to Forest Pests and Diseases in The Tropics. Universitas Gadjah Mada, Yogyakarta, Indonesia, 8th-10th October 2012,
Moreira X, Petry WK, Mooney KA, Rasmann S, Abdala-Roberts L. 2018. Elevational gradients in plant defences and insect herbivory: Recent advances in the field and prospects for future research. Ecography 41 (9): 1485-1496. DOI: 10.1111/ecog.03184.
Moret P, Aráuz MDLÁ, Gobbi M, Barragán Á. 2016. Climate warming effects in the tropical Andes: First evidence for upslope shifts of Carabidae (Coleoptera) in Ecuador. Insect Conserv Divers 9 (4): 342-350. DOI: 10.1111/icad.12173.
Müller J, Brandl R, Brändle M, Förster B, de Araujo BC, Gossner MM, Seibold S. 2018. LiDAR?derived canopy structure supports the more?individuals hypothesis for arthropod diversity in temperate forests. Oikos 127 (6): 814-824. DOI: 10.1111/oik.04972.
Müller J, Mehr M, Bässler C, Fenton MB, Hothorn T, Pretzsch H, Brandl R. 2012. Aggregative response in bats: Prey abundance versus habitat. Oecologia 169 (3): 673-684. DOI: 10.1007/s00442-011-2247-y.
Niquidet K, Tang J, Peter B. 2016. Economic analysis of forest insect pests in Canada. Canad Entomol 148 (S1): S357-S366. DOI: 10.4039/tce.2015.27.
Pellissier L, Fiedler K, Ndribe C, Dubuis A, Pradervand JN, Guisan A, Rasmann S. 2012. Shifts in species richness, herbivore specialization, and plant resistance along elevation gradients. Ecol Evol 2 (8): 1818-1825. DOI: 10.1002/ece3.296.
Pellissier L, Roger A, Bilat J, Rasmann S. 2014. High elevation Plantago lanceolata plants are less resistant to herbivory than their low elevation conspecifics: Is it just temperature? Ecography 37 (10): 950-959. DOI: 10.1111/ecog.00833.
Pörtner HO, Roberts DC, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E, Weyer N. 2019. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. IPCC Intergovernmental Panel on Climate Change, Geneva, Switzerland.
Pratt JD, Datu A, Tran T, Sheng DC, Mooney KA. 2017. Genetically based latitudinal clines in Artemisia californica drive parallel clines in arthropod communities. Ecology 98 (1): 79-91. DOI: 10.1002/ecy.1620.
Pureswaran DS, Roques A, Battisti A. 2018. Forest insects and climate change. Curr For Rep 4 (2): 35-50. DOI: 10.1007/s40725-018-0075-6.
Rasmann S, Alvarez N, Pellissier L. 2014. The altitudinal niche-breadth hypothesis in insect-plant interactions. Ann Plant Rev 47: 339-359. DOI: 10.1002/9781118472507.ch10.
Razy J, Momin B, John LY, Chung AYC. 2022. Rapid assessment of insect diversity (Ext.), Kalabakan, Sabah. IOP Conf Ser: Earth Environ Sci 1053 (1): 012008. DOI: 10.1088/1755-1315/1053/1/012008.
Ricklefs RE, He F. 2016. Region effects influence local tree species diversity. Proc Natl Acad Sci 113 (3): 674-679. DOI: 10.1073/pnas.1523683113.
Samways MJ, Osborn R, Carliel F. 1996. Effect of a highway on ant (Hymenoptera: Formicidae) species composition and abundance, with a recommendation for roadside verge width. Biodivers Conserv 6: 903-913. DOI: 10.1023/A:1018355328197.
Schemske DW, Mittelbach GG. 2017. Latitudinal gradients in species diversity: Reflections on Pianka’s 1966 article and a look forward. Am Nat 189 (6): 599-603. DOI: 10.1086/691719.
Sengupta T, Pal TK. 1998. Faunal Diversity in India: Coleoptera Zoological Survey of India, Calcutta.
Shah AA, Dillon ME, Hotaling S, Woods HA. 2020. High elevation insect communities face shifting ecological and evolutionary landscapes. Curr Opin Insect Sci 41: 1-6. DOI: 10.1016/j.cois.2020.04.002.
Shannon CE, Wiener W. 1963. The Mathematical Theory of Communication. University of Illinois Press, Urbana, USA.
Sharma M 2016. Forest pests of forestry plants and their management. Intl J Adv Res 4 (8): 2099-2116. DOI: 10.21474/IJAR01/1427.
Shishodia MS, Gupta S. 2009. Checklist of Orthoptera (Insecta) of Himachal Pradesh, India. J Threat Taxa 1 (11): 569-572. DOI: 10.11609/JoTT.o1923.569-72.
Simpson EH. 1949. Measurement of diversity. Nature 163 (4148): 688-688. DOI: 10.1038/163688a0.
Singh V. 2013. Insect fauna of Khajjiar Lake of Chamba District, Himachal Pradesh, India. Pak J Zool 45 (4): 1053-1061.
Spafford RD, Lortie CJ. 2013. Sweeping beauty: Is grassland arthropod community composition effectively estimated by sweep netting? Ecol Evol 3 (10): 3347-3358. DOI: 10.1002/ece3.688.
Thackeray SJ, Henrys PA, Hemming D, Bell JR, Botham MS, Burthe S, Wanless S. 2016. Phenological sensitivity to climate across taxa and trophic levels. Nature 535 (7611): 241-245. DOI: 10.1038/nature18608.
Thakur V, Kumar P. 2015. Biodiversity of geometrid moths (Lepidoptera) of conifer forests of Saraj Valley of Himachal Pradesh, India. Intl J Curr Res 7 (1): 11426-11429.
Tinya F, Kovács B, Bidló A, Dima B, Király I, Kutszegi G, Ódor P. 2021. Environmental drivers of forest biodiversity in temperate mixed forests–A multi-taxon approach. Sci. Total Environ 795: 148720. DOI: 10.1016/j.scitotenv.2021.148720.
Trisnawati DW, Nurkomar I, Ananda LK, Buchori D. 2022. Agroecosystem complexity of Surjanand Lembaran as local farming systems effects on biodiversity of pest insects. Biodiversitas 23: 3619-3629. DOI: 10.13057/biodiv/d230738.
Varshney RK. 1992. A check list of scale insects and mealy bugs of Southe Asia. Part-I. Rec Zool Surv India 139: 1-152.
Wingfield MJ, Brockerhoff EG, Wingfield BD, Slippers B. 2015. Planted forest health: The need for a global strategy. Science 349 (6250): 832-836. DOI: 10.1126/science.aac6674.
Wu CH, Holloway JD, Hill JK, Thomas CD, Chen I Ho CK. 2019. Reduced body sizes in climate-impacted Borneo moth assemblages are primarily explained by range shifts. Nat Commun 10 (1): 1-7. DOI: 10.1038/s41467-019-12655-y.