Molecular identification of yeasts from Turkish traditional cheeses: Extracellular enzyme activities and physiological properties important for dairy industry

##plugins.themes.bootstrap3.article.main##

MELİH GÜNAY
TÜLAY TURGUT GENÇ

Abstract

Abstract. Gunay M, Genc TT. 2023. Molecular identification of yeasts from Turkish traditional cheeses: Extracellular enzyme activities and physiological properties important for dairy industry. Nusantara Bioscience 15: 1-11. The determination of yeast microbiota in cheeses and the physiological properties of yeasts are very important for the dairy industry. In addition, the physiological features, proteolytic and lipolytic activities, and stress tolerance of yeasts have a significant role in the selection of starter yeast species for cheese ripening. This study aimed to determine industrially important yeasts isolated from cheese samples. Molecular techniques identified the isolated yeast strains. The yeast strains’ extracellular enzyme activities, fermentation capacities, and thermotolerance and osmotolerance properties were also evaluated. A total of 81 yeast strains were isolated and characterized from three types of cheese samples. PCR-RFLP determined the isolated yeast strains and sequence analysis of ITS1-5.8S-ITS2 and 26S rDNA regions. A maximum parsimony tree was constructed by MEGA X software to evaluate the phylogenetic relationship of identified yeast strains. Candida intermedia, Candida parapsilosis, Clavispora lusitaniae, Debaryomyces hanseniiKluyveromyces marxianus, Pichia kudriavzevii, and Wickerhamomyces anomalus yeast species were identified on cheese samples. The distribution of identified yeast species on cheese samples was determined as 48.1% for W. anomalus, 17.3% for K. marxianus, 14.8% for C. parapsilosis, 8.6% for D. hansenii, 4.9% for Cl. lusitaniae, 3.7% for C. intermedia and 2.5% for P. kudriavzevii. The W. anomalus yeast species was common in three cheese types. All strains of W. anomalus and P. kudriavzevii yeast species, three C. parapsilosis, and two Cl. lusitaniae yeast strains have important physiological properties for industrial applications. These yeast strains have the potential to be used in combination as starter cultures to improve cheese maturation in the future. This comprehensive study identifies yeast species by ITS1-5.8S-ITS2 and 26S rDNA regions and determines industrially important yeast species using multiple criteria (extracellular enzyme activity, stress tolerance, and fermentation capacity).

2019-01-01

##plugins.themes.bootstrap3.article.details##

References
Abdelmoteleb A, Troncoso-Rojas R, Gonzalez-Soto T, González-Mendoza D. 2017. Antifungical activity of autochthonous Bacillus subtilis isolated from Prosopis juliflora against phytopathogenic fungi. Mycobiol 45: 385-391. DOI: 10.5941/MYCO.2017.45.4.385.
Adlercreutz P. 2013. Immobilisation and application of lipases in organic media. Chem Soc Rev 42: 6406-6436. DOI: 10.1039/C3CS35446F.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215: 403-410. DOI: 10.1016/S0022-2836(05)80360-2.
Balakumar S, Arasaratnam V. 2012. Osmo-, thermo- and ethanol- tolerances of Saccharomyces cerevisiae S1. Braz J Microbiol 43: 157-166. DOI: 10.1590/S1517-838220120001000017.
Banjara N, Suhr MJ, Hallen-Adams HE. 2015. Diversity of yeast and mold species from a variety of cheese types. Curr Microbiol 70: 792-800. DOI: 10.1007/s00284-015-0790-1.
Benito MJ, Gonçalves Dos Santosa MTP, Córdoba MG, Alvarenga N, Herrera SRMS. 2018. Yeast community in traditional Portuguese serpa cheese by culture-dependent and -independent DNA approaches. Intl J Food Microbiol 262: 63-70. DOI: 10.1016/j.ijfoodmicro.2017.09.013.
Binetti A, Carrasco M, Reinheimer J, Suarez V. 2013. Yeasts from autochthonal cheese starters: Technological and functional properties. J App Microbiol 115: 434-444. DOI: 10.1111/jam.12228.
Bintsis T. 2021. Yeasts in different types of cheese. AIMS Microbiol 7: 447-470. DOI: 10.3934/microbiol.2021027.
Breuer U, Harms H. 2006. Debaryomyces hansenii -an extremophilic yeast with biotechnological potential. Yeast 23: 415-437. DOI: 10.1002/yea.1374.
Cardoso VM, Borelli BM, Lara CA, Soares MA, Pataro C, Bovedan EC, Rosa CA. 2015. The influence of seasons and ripening time on yeast communities of a traditional Brazilian cheese. Food Res Intl 69: 331-340. DOI: 10.1016/j.foodres.2014.12.040.
Ceugniez A, Drider D, Jacques P, Coucheney F. 2015. Yeast diversity in a traditional French cheese “Tomme d'orchies” reveals infrequent and frequent species with associated benefits. Food Microbiol 52: 177-184. DOI: 10.1016/j.fm.2015.08.001.
Choi DH, Eun-Hee Park EH, Kim MD. 2017. Isolation of thermotolerant yeast Pichia kudriavzevii from nuruk. Food Sci Biotechnol 26: 1357-1362. DOI: 10.1007/s10068-017-0155-6.
Chombo-Morales P, Kirchmayr M, Gschaedler A, Lugo-Cervantes E, Villanueva-Rodríguez S. 2016. Effects of controlling ripening conditions on the dynamics of the native microbial population of Mexican artisanal Cotija cheese assessed by PCR-DGGE. Food Sci Technol 65: 1153-1161. DOI: 10.1016/j.lwt.2015.09.044.
Çorbaci C, Uçar FB, Yalçin HT. 2012. Isolation and characterization of yeasts associated with Turkish-style homemade dairy products and their potential as starter cultures. Afr J Microbiol Res 6: 534-542. DOI: 10.5897/AJMR11.895.
de Araújo VD, de Albuquerque LC, Neves RP, Mota CS, Moreira KA, de Lima-Filho JL, Cavalcanti MTH, Converti A, Porto ALF. 2010. Production stability of protease from Candida buinensis. App Biochem Biotechnol 162: 830-842. DOI: 10.1007/s12010-009-8779-5.
Delgado-Ospina J, Triboletti S, Alessandria V, Serio A, Sergi M, Paparella A, Rantsiou K, Chaves-López C. 2020. Functional biodiversity of yeasts isolated from Colombian fermented and dry cocoa beans. Microorganisms 8: 1086. DOI: 10.3390/microorganisms8071086.
Dugat-Bony E, Garnier L, Denonfoux J, Ferreira S, Sarthou AS Bonnarme P, Irlinger F. 2016. Highlighting the microbial diversity of 12 French cheese varieties. Intl J Food Microbiol 238: 265-273. DOI: 10.1016/j.ijfoodmicro.2016.09.026.
Escribano R, Lucia Gonzalez-Arenzana L, Garijo P, Berlanas C, Lopez-Alfaro I, Lopez R, Gutierrez AR, Santamaria P. 2017. Screening of enzymatic activities within different enological non-Saccharomyces yeasts. J Food Sci Technol 54: 1555-1564. DOI: 10.1007/s13197-017-2587-7.
Esen Y, Çetin B. 2021. Bacterial and yeast microbial diversity of the ripened traditional middle east surk cheese, Intl Dairy J 117: 105004. DOI: 10.1016/j.idairyj.2021.105004.
Fonseca GG, Heinzle E, Wittmann C, Gombert AK. 2008. The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 79: 339-354. DOI: 10.1007/s00253-008-1458-6.
Fröhlich-Wyder MT, Arias-Roth E, Jakob E. 2019. Cheese yeasts. Yeast 36 (3): 129-141. DOI: 10.1002/yea.3368.
Garnier L, Valence F, Pawtowski A, Auhustsinava-Galerne L, Frotté N, Baroncelli R, Deniel F, Coton E, Mounie J. 2017. Diversity of spoilage fungi associated with various French dairy products. Intl J Food Microbiol 241: 191-197. DOI: 10.1016/j.ijfoodmicro.2016.10.026.
Genç T, Günay M. 2020. Internal transcribed spacer (ITS) sequence-based identification of yeast biota on pomegranate surface and determination of extracellular enzyme profile. Nus Biosci 12: 59-67. DOI: 10.13057/nusbiosci/n120111.
Geronikou A, Srimahaeak T, Rantsiou K, Triantafillidis G, Larsen N, Jespersen L. 2020. Occurrence of yeasts in white-brined cheeses: methodologies for identification, spoilage potential and good manufacturing practices. Front Microbiol 11: 582778. DOI: 10.3389/fmicb.2020.582778.
Gibson BR, Pham T, Wimalasena T, Box WG, Koivuranta K, Storgards E, Smart KA. 2011. Evaluation of ITS PCR and RFLP for differentiation and identification of brewing yeast and brewery ‘wild’ yeast contaminants. J Inst Brew 117: 556-568. DOI: 10.1002/j.2050-0416.2011.tb00504.x.
Gkatzionis K, Yunita D, Linforth RS, Dickinson M, Dodd CER. 2014. Diversity and activities of yeasts from different parts of a Stilton cheese. Int J Food Microbiol 177: 109-116. DOI: 10.1016/j.ijfoodmicro.2014.02.016.
Gupta R, Kumari A, Syal P. Singh Y. 2015. Molecular and functional diversity of yeast and fungal lipases: Their role in biotechnology and cellular physiology. Prog Lipid Res 57: 40-54. DOI: 10.1016/j.plipres.2014.12.001.
Haastrup MK, Johansen P, Malskær AH, Castro-Mejía JL, Kot W, Krych L, Arneborg N, Jespersen L. 2018. Cheese brines from Danish dairies reveal a complex microbiota comprising several halotolerant bacteria and yeasts. Intl J Food Microbiol 285: 173-187. DOI: 10.1016/j.ijfoodmicro.2018.08.015.
Hatoum R, Labrie S, Fliss O. 2013. Identification and partial characterization of antilisterial compounds produced by dairy yeasts. Probiotics Antimicrob Proteins 5: 8-17. DOI: 10.1007/s12602-012-9109-8.
Hayalo?lu AA, Güven M, Fox PF. 2002. Microbiological, biochemical and technological properties of Turkish white cheese ‘Beyaz Peynir’. Intl Dairy J 12: 635-648. DOI: 10.1016/S0958-6946(02)00055-9.
Johnson EA, Echavarri-Erasun C. 2011. Yeast biotechnology. In: Kurtzman CP, Fell JW, Boekhout T (eds). The Yeasts, A Taxonomic Study, Elsevier, Amsterdam. DOI: 10.1016/B978-0-444-52149-1.00003-3.
Johnson EA. 2013a. Biotechnology of non-Saccharomyces yeasts--the ascomycetes. Appl Microbiol Biotechnol 97: 503-517. DOI: 10.1007/s00253-012-4497-y.
Johnson EA. 2013b. Biotechnology of non-Saccharomyces yeasts--the basidiomycetes. Appl Microbiol Biotechnol 97: 7563-7577. DOI: 10.1007/s00253-013-5046-z.
Karasu-Yalcin S, Senses-Ergul S, Ozbas ZY. 2017. Enzymatic characterization of yeast strains originated from traditional Mihalic cheese. J Microbiol Biotechnol Food Sci 6: 1152-1156. DOI: 10.15414/jmbfs.2017.6.5.1152-1156.
Karki TB, Timilsina PM, Yadav A, Pandey GR, Joshi Y, Bhujel S, Adhikari R, Neupane K. 2017. Selection and characterization of potential baker’s yeast from indigenous resources of Nepal. Biotechnol Res Intl 2017: 1925820. DOI: 10.1155/2017/1925820.
Kavas G, Kinik D, Uysal S, Kilic S, Celikel N, Akbulut N. 2006. Characterisation of yeasts isolated from artisanal Turkish dairy products. Intl J Dairy Sci 1: 44-50. DOI: 10.3923/ijds.2006.44.50.
Kumar D, Kumar L, Nagar S, Raina C, Parshad R, Gupta VK. 2012. Screening, isolation and production of lipase/esterase producing Bacillus sp. Strain DVL2 and its potential evaluation in esterification and resolution reactions. Arch App Sci Res 4: 1763-1770.
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35: 1547-1549. DOI: 10.1093/molbev/msy096.
Kurtzman CP, Fell JW, Boekhout T. 2011. The Yeasts: A taxonomic Study. Elsevier B.V, Amsterdam.
Kurtzman CP, Robnett CJ. 1998. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Anton Leeuw 73: 331-371. DOI: 10.1023/A:1001761008817.
Liu E, Li M, Abdella A, Wilkins MR. 2020. Development of a cost-effective medium for submerged production of fungal aryl alcohol oxidase using a genetically modified Aspergillus nidulans strain. Bioresour Technol 305: 123038. DOI: 10.1016/j.biortech.2020.123038.
Lõoke M, Kristjuhan K, Kristjuhan A. 2011. Extraction of genomic DNA from yeasts for PCR-based applications. Biotechniques 50: 325-328. DOI: 10.2144/000113672.
Merchan AV, Ruiz-Moyano S, Hernández MV, Benito MJ, Aranda E, Rodríguez A, Martín A. 2021. Characterization of autochthonal yeasts isolated from Spanish soft raw ewe milk protected designation of origin cheeses for technological application. J Dairy Sci 105: 2931-2947. DOI: 10.3168/jds.2021-21368.
Molnárová J, Vadkertiová R, Stratilová E. 2014. Extracellular enzymatic activities and physiological profiles of yeasts colonizing fruit trees. J Basic Microbiol 54: 74-84. DOI: 10.1002/jobm.201300072.
Montel MC, Buchin S, Mallet A, Delbes-Paus C, Vuitton DA, Desmasures N, Berthier F. 2014. Traditional cheeses: Rich and diverse microbiota with associated benefits. Intl J Food Microbiol 177: 136-154. DOI: 10.1016/j.ijfoodmicro.2014.02.019.
Moubasher AAH, Abdel-Sater MA, Soliman ZSM. 2018. Yeasts and filamentous fungi associated with some dairy products in Egypt. J Mycol Med 28: 76-86. DOI: 10.1016/j.mycmed.2017.12.003.
Naveed M, Nadeem F, Mehmood T, Bilal M, Anwar Z, Amjad F. 2021. Protease-A versatile and ecofriendly biocatalyst with multi industrial applications: An updated review. Catal Lett 151: 307-323. DOI: 10.1007/s10562-020-03316-7.
Padilla B, Manzanares P, Belloch C. 2014. Yeast species and genetic heterogeneity within Debaryomyces hansenii along the ripening process of traditional ewes' and goats' cheeses. Food Microbiol 38: 160-166. DOI: 10.1016/j.fm.2013.09.002.
Pangallo D, Sakova N, Korenova J, Puškárová A, Kraková L, Valík L, Kuchta T. 2014. Microbial diversity and dynamics during the production of may bryndza cheese. Intl J Food Microbiol 170: 38-43. DOI: 10.1016/j.ijfoodmicro.2013.10.015.
Parafati L, Vitale A, Restuccia C, Cirvilleri G. 2015. Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape. Food microbiol 47: 85-92. DOI: 10.1016/j.fm.2014.11.013
Pincus DH, Orenga S, Chatellier S. 2007. Yeast identification--past, present, and future methods. Med Mycol 45: 97-121. DOI: 10.1080/13693780601059936.
Settier-Ramírez L, López-Carballo G, Hernández-Muñoz P, Fontana A, Strub C, Schorr-Galindo S. 2021. New isolated Metschnikowia pulcherrima strains from apples for postharvest biocontrol of Penicillium expansum and patulin accumulation. Toxins 13: 397. DOI: 10.3390/toxins13060397.
Sharma S, Kanwar SS. 2014. Organic solvent tolerant lipases and applications. Sci World J 2014: 625258. DOI: 10.1155/2014/625258.
Steensels J, Verstrepen KJ. 2014. Taming wild yeast: Potential of conventional and nonconventional yeasts in industrial fermentations. Ann Rev Microbiol 68: 61-80. DOI: 10.1146/annurev-micro-091213-113025.
Tofalo R, Fasoli G, Schirone M, Perpetuini P, Pepe K, Corsetti A, Suzzi G. 2014. The predominance, biodiversity and biotechnological properties of Kluyveromyces marxianus in the production of Pecorino di Farindola cheese. Intl J Food Microbiol 187: 41-49. DOI: 10.1016/j.ijfoodmicro.2014.06.029.
Togay SO, Capece A, Siesto G, Aksu H, Sand?kç? Altunalmaz S, Y?lmaz Aksu F, Romano P, Karagül-Yüceer Y. 2020. Molecular characterization of yeasts isolated from traditional Turkish cheeses. Food Sci Technol 40: 871-876. DOI: 10.1590/fst.24319.
Vasdinyei R, Deak T. 2003. Characterization of yeast isolates originating from Hungarian dairy products using traditional and molecular identification techniques. Intl J Food Microbiol 86: 123-130. DOI: 10.1016/S0168-1605(03)00251-4.
Vincent M, Johnny Q, Adeni DSA, Suhaili N. 2021. Potential of Candida glabrata from ragias a bioethanol producer using selected carbohydrate substrate Nus Biosci 13: 1-10. DOI: 10.13057/nusbiosci/n130101.
White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds). PCR Protocols: A Guide to Methods and Applications. Academic Press, California.
Yalç?n HT, Çorbac? C, Uçar FB. 2014. Molecular characterization and lipase profiling of the yeasts isolated from environments contaminated with petroleum. J Basic Microbiol 54: 85-92. DOI: 10.1002/jobm.201300029.
Yalç?n HT, Uçar FB. 2009. Isolation and characterization of cheese spoiler yeast isolated from Turkish white cheeses. Ann Microbiol 59: 477-483. DOI: 10.1007/BF03175134.
Yamamoto H, Shima T, Yamaguchi M, Mochizuki Y, Hoshida H, Kakuta S, Kondo-Kakuta C, Noda NN, Inaqaki F, Itoh T, Akada R, Ohsumi Y. 2015. The thermotolerant yeast Kluyveromyces marxianus is a useful organism for structural and biochemical studies of autophagy. J Biol Chem 115: 6833-6842. DOI: 10.1074/jbc.M115.684233.