Identification of metallothionein protein in Anodonta woodiana as a biomarker of mercury (Hg) contamination

##plugins.themes.bootstrap3.article.main##

SATA YOSHIDA SRIE RAHAYU
AZAHRA FADILA
MELTA RINI FAHMI

Abstract

Abstract. Rahayu SYS, Fadila A, Fahmi MR. 2023. Identification of metallothionein protein in Anodonta woodiana as a biomarker of mercury (Hg) contamination. Nusantara Bioscience 15: 90-94. Heavy metal contamination can affect the survival of aquatic biota and will accumulate in the bodiesorganisms. Moreover, contamination identification at the molecular level can be analyzed using biomarker analysis. Biomarkers are responses measured individually, ranging from enzymes and xenobiotic measurements to organ and overall conditions. Biomarker analysis can be done by checking the metallothionein protein, this expression can be induced by Reactive Oxygen Species (ROS). Metallothionein (MT) has a thiol group with nucleophilic properties. As a result, this group can make Metallothionein able to find metals and free radicals. Therefore, prevention that can be done to reduce contamination at a higher trophic level requires monitoring the molecular level by observing the metallothionein protein. For example, Anodonta woodiana (Rea, 1834) or kijing taiwan induced by HgCl2 aims to characterize their absorption ability in the environment through metallothionein protein. That was conducted by the SDS-PAGE (Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis) method. SDS-PAGE electrophoresis results showed that the size of the metallothionein protein was 7 kDa, 15 kDa, and >30 kDa. Size >30 kDa is a group of proteins related to stress control or Heat shock protein (Hsp). The presence of Hsp is due to the body increasing stress protein synthesis and metallothionein to reduce normal protein synthesis. Based on the results obtained, this study revealed that A. woodiana could absorb HgCl2, as evidenced by the metallothionein protein characterization results.

2019-01-01

##plugins.themes.bootstrap3.article.details##

References
Adhani R, Husaini. 2017. Heavy Metals Around Humans. Universitas Lambung Mangkurat Press, Banjarmasin. [Indonesian]
Butet NA. 2013. Genotypic Plasticity and Blood Clam Phenotype (Anadara granosa) in Response to Environmental Pollution. Case Study in Banten Coastal Waters. [Dissertation]. Institut Pertanian Bogor, Bogor. [Indonesian]
Dewi NK 2017. Metallothionein Monograph Book. Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang Press, Semarang. [Indonesian]
Diaman G. 2016. Analisa Profil Protein Kerang Darah (Anadara granosa) yang Dipajan Ion Logam Timbal (Pb) Dengan Variasi Konsentrasi. [Skripsi]. Universitas Muhammadiyah Semarang, Semarang. [Indonesian]
Dray C, Claude K, Daniele D, Aurelie W, Jeremie B, Marie B, Patrice DC, Camille A, Charlotte G, Christian C, Remy B, Isabelle CL, Philippe V. 2008. Apelin stimulates glucose utilization in normal and obese insulin-resistant mice. Cell Metab 8 (5):437-445. DOI: 10.1016/j.cmet.2008.10.003.
Formigari A, Paolo A, Vera C, Viviana DN, Moira F, Silvia F, Alessandro S, Luca S, Paolo I. 2008. Relationship between metal transcription Factor-1 and Zinc in resistance to metals producing free radicals. Cyrent Chem Biol 2 (3): 256-266. DOI: 10.2174/2212796810802030256.
Khati W, Ouali K, Mouneyrac C, Ali B. 2012. Metallothioneins in aquatic invertebrates: Their role in metal detoxification and their use in biomonitoring. Energy Proc 18: 784-794. DOI: 10.1016/j.egypro.2012.05.094.
Kimura T, Li Y, Okumura F, Itoh N, Nakanishi T, Sone T, Andrews GK. 2008. Chromium (VI) Inhibits Mouse Metallothionein-I Gene Transcription by preventing the Zinc-dependent information of an MTF-1-P300 complex. Biochemical 415 (3): 477-482. DOI:10.1042/BJ20081025.
Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227 (5259): 680-685. DOI: 10.1038/227680a0.
Langmade SJ, Ravindra R, Daniels PJ, Andrews. 2000. The regulation factor MTF-1 mediates metal regulation of the mouse ZnT1 gene. J Biol Chem 275 (44): 34803-9. DOI: 10.1074/jbc.M007339200.
Lee JS, Jae YK. 2010. Roles of zinc and metallothionein-3 in oxidative stressinduced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes. Mol Brain 3 (1): 1-9. DOI: 10.1186/1756-6606-3-30.
Prasad AS, Bin B. 2019. Molecular mechanisms of Zinc as a pro-antioxidant mediator: Clinical therapeutic implications. Antioxidants 8 (6): 164-186. DOI: 10.3390/antiox8060164.
Prihatini W, Mulyati AH. 2013. Mercury depuration with ozonation in anadara antiquata in food safety efforts. Prosiding Seminar Nasional Matematika, Sains, dan Teknologi 4: 9-18. [Indonesian]
Prihatini W. 2013. Kemampuan Adaptif Kerang Bulu Anadara antiquata Di Perairan Tercemar Logam Berat: Aspek Biokinetik, Ekobiologi, Histologi. [Dissertation]. Institut Pertanian Bogor, Bogor. [Indonesian]
Rahayu SYS, Wahyu P, Tri P. 2019. Biomarkers of Metallothionein Genes in Bivalves and Bioremediation in Polluted Waters. Pakuan University Research and Community Service Institute, Bogor. [Indonesian]
Ramzy AY, Muhammad IC, Shakel A, Quratulan A. 2021. Bioaccumulation of heavy metals in fish and other aquatic organisms from Karachi Coast, Pakistan. Nusantara Biosci 13 (1): 73-84. DOI: 10.13057/nusbiosci/n130111.
Rumahlatu D, Corebime AD, Amin M, Rohman F. 2012. Cadmium and its effect on Metallothionein protein expression in Deodema setosum (Echinoidea; Echinoderms). Fish Res 1 (1): 26-35. DOI: 10.24275/uam/izt/dcbs/hidro/2020v29n3.
Smith PJ, Marie W, Emeline F, John HB, Rachel JE. 2008. Impact of overexpression of Metallothionein-1 on cell cycle progression and Zinc toxicity. Cell Physiol 295(5): 1899-1408. DOI: 10.1152/ajpcell.00342.2008.
Soegianto A, Trisnadi WCP, Bambang I. 2018. Physiological Response to Copper Exposure (CU) in Tilapia (Oreochromis niloticus): Evaluation of Ionic, Osmotic, and Metallothionein Regulations in Gills. Universitas Airlangga Library, Surabaya. [Indonesian]
Thirumoorthy N, Manisenthil, Kumar KT, Shyam SA, Panayappan L, Chatterjee M. 2007. Metallothionein: An overview. World J Gastroenterol 13 (7): 993-6. DOI: 10.3748/wjg.v13.i7.993.