Seed morphology and germination type of some species of dipterocarps

##plugins.themes.bootstrap3.article.main##

INDRIANI EKASARI
LUSI OKTAVIANI

Abstract

Abstract. Ekasari I, Oktaviani L. 2024. Seed morphology and germination type of some species of dipterocarps. Nusantara Bioscience 16: 192-200. The dipterocarps seed conservation and effective seedling management of threatened plants required basic information on morphology and germination type to provide information on biological, ecological, and characteristics with taxonomic relevance. Seeds and seedlings characters can provide useful data in the delimitation and identification of species, including wings, sizes, shapes, germination type, and stages. The study aims to investigate the morphology and germination type of the seeds of some species of dipterocarps to contextualize and understand their ecological implications because the seed was the fundamental stage for the propagation and perpetuation of the species. This study was conducted for three months from seed collection, seed morphology measurement, seed sowing, and observation for germination type. The seeds from five species of dipterocarps (Shorea selanica, S. pinanga, S. stenoptera, Hopea gregaria, and Vatica pauciflora) were collected from the Forest Research and Development, Ministry of Forestry (FORDA), Dramaga, Bogor, Indonesia and they were brought to seed conservation laboratory in Bogor Botanical Gardens. The results showed six characters to describe each species seed (seed shape, the dimensions of longer wings, the dimensions of shorter wings, seed weight, seed length, and seed width). The S. pinanga showed the longest wings among others (152.25±9.93 mm), and H. gregaria showed the lightest weight (0.49±0.06 g). All species showed the same germination type (epigeal) with cotyledons that rise above ground. There were five stages of seed germination from radicle growth until cotyledon was removed or perfectly germinated for 90 days. The plantings and pathogens management were required to increase the Dipterocarpaceae seedlings' growth success. This finding was crucial for developing methods for seed conservation and tropical rainforest restoration.

2019-01-01

##plugins.themes.bootstrap3.article.details##

References
Aoyagi R, Imai N, Kitayama K. 2013. Ecological significance of the patches dominated by pioneer trees for the regeneration of dipterocarps in a Bornean logged-over secondary forest. For Ecol Manag 289: 378-384. DOI: 10.1016/j.foreco.2012.10.037.
Blackham GV, Thomas A, Webb EL, Corlett RT. 2013. Seed rain into a degraded tropical peatland in Central Kalimantan, Indonesia. Biol Conserv 167: 215-223. DOI: 10.1016/j.biocon.2013.08.015.
Chong KY, Chong R, Tan LWA, Yee ATK, Chua MAH, Wong KM, Tan HTW. 2016. Seed production and survival of four dipterocarp species in degraded forests in Singapore. Plant Ecol Divers 9(5-6): 483-490. DOI: 10.1080/17550874.2016.1266404.
de Morais CT, Ghazoul J, Maycock CR, Bagchi R, Burslem DRFP, Khoo E, Itoh A, Nanami S, Matsuyama S, Finger A, Ismail SA, Kettle CJ. 2015. Understanding local patterns of genetic diversity in dipterocarps using a multi-site, multi-species approach: Implications for forest management and restoration. For Ecol Manag 356: 153-165. DOI: 10.1016/j.foreco.2015.07.023.
Ediriweera S, Bandara C, Woodbury DJ, Mi X, Gunatilleke IAUN, Gunatilleke CVS, Ashton MS. 2020. Changes in tree structure, composition, and diversity of a mixed-dipterocarp rainforest over a 40-year period. For Ecol Manag 458: 117764. DOI: 10.1016/j.foreco.2019.117764.
Fambayun RA, Kalima T, Rachmat HH. 2020. Species diversity and threats on the habitat of Vatica javanica in the Ciangir Forest, Indonesia. IOP Conf Ser: Earth Environ Sci 533 (1): 012013. DOI: 10.1088/1755-1315/533/1/012013.
Gabr DG. 2014. Seed morphology and seed coat anatomy of some species of Apocynaceae and Asclepiadaceae. Ann Agric Sci 59 (2): 229-238. DOI: 10.1016/j.aoas.2014.11.010.
Hamilton R, Hall T, Stevenson J, Penny D. 2019. Distinguishing the pollen of Dipterocarpaceae from the seasonally dry and moist tropics of Southeast Asia using light microscopy. Rev Palaeobot Palynol 263: 117-133. DOI: 10.1016/j.revpalbo.2019.01.012.
Handayani T. 2017. Seed germination and seedling morphology of Artabotrys hexapetalus. Nusantara Biosci 9 (1): 23-30. DOI: 10.13057/nusbiosci/n090105.
Irni J. 2022. Analisis pola sebaran spasial beberapa jenis pohon di Hutan Penelitian Dramaga. Agrotristek 1 (1): 18-27. [Indonesian]
Kenzo T, Ichie T, Norichika Y. Kamiya K, Inoue Y, Ngo KM, Lum SKY. 2023. Drought tolerance in dipterocarp species improved through interspecific hybridization in a tropical rainforest. For Ecol Manag 548: 121388. DOI: 10.1016/j.foreco.2023.121388.
Koen J, Slabbert MM, Bester C, Bierman F. 2017. Germination characteristics of dimorphic honeybush (Cyclopia spp.) seed. S Afr J Bot 110: 68-74. DOI: 10.1016/j.sajb.2016.03.006.
Luo W, Strijk JS, Barstow M, Wee AKS. 2022. The role of protected areas in tropical tree conservation post-2020: A case study using threatened Dipterocarpaceae. Biol Conserv 272: 109634. DOI: 10.1016/j.biocon.2022.109634.
Maharani R, Handayani P, Hardjana AK. 2013. Panduan identifikasi jenis pohon tengkawang (Sidiyasa, K.). Balai Besar Penelitian Dipterokarpa, Balai Penelitian dan Pengembangan Kehutanan, Departemen Kehutanan bekerjasama dengan ITTO Project PD 586/10 Rev.1(F). [Indonesian]
Masano. 1991. Planting trial of Shorea johorensis with strips of different width at Haurbentes Experimental Garden, West Java. Buletin Penelitian Hutan 540: 25-33.
Molina JR, Moreno N, Moreno R. 2017. Influence of fire regime on forest structure and restoration of a native forest type in the southern Andean Range. Ecol Eng 102: 390-396. DOI: 10.1016/j.ecoleng.2017.02.059.
Montaño-Arias SA, Camargo-Ricalde SL, Grether R, Díaz-Pontones D. 2022. Seed morphology, anatomy and histochemistry in two Mexican species of Mimosa (Leguminosae, mimosoid clade). Flora 286: 151970. DOI: 10.1016/j.flora.2021.151970.
Muralikrishna H, Chandrashekar KR. 1997. Regeneration of Hopea ponga: influence of wing loading and viability of seeds. J Trop For Sci 10(1): 58-65.
Naito Y, Kanzaki M, Iwata H, Obayashi K, Lee SL, Muhammad N, Okuda T, Tsumura Y. 2008. Density-dependent selfing and its effects on seed performance in a tropical canopy tree species, Shorea acuminata (Dipterocarpaceae). For Ecol Manag 256 (3): 375-383. DOI: 10.1016/j.foreco.2008.04.031.
Otsamo R, Adjers G, Kuusipalo J, Otsamo A, Susilo N, Tuomela K. 1996. Effect of nursery practices on seed germination of selected dipterocarps species. J Trop For Sci 9 (1): 23-34.
Primananda E, Sunardi, Fefirenta AD, Rahmawati K, Mira FR, Budi SW, Robiansyah I. 2023. Survey for threatened plants in riparian fragmented forests: A case study on three Vatica (Dipterocarpaceae) species in Kapuas Hulu, West Kalimantan. J Nat Conserv 72: 126367. DOI: 10.1016/j.jnc.2023.126367.
Rachman E, Sunaryo S. 1999. Karakter morfologi dan perkecambahan biji Strombosia javanica Bl. (Olacaceae) dalam kaitannya dengan sifat-sifat parasitisme. Berita Biologi 4 (5): 235-240. [Indonesian]
Rachmat HH, Subiakto A, Susilowati A. 2018. Mass vegetative propagation of rare and endangered tree species of Indonesia by shoot cuttings by KOFFCO method and effect of container type on nursery storage of rooted cuttings. Biodiversitas 19 (6): 2353-2358. DOI: 10.13057/biodiv/d190645.
Rehmani MS, Xian BS, Wei S, He J, Feng Z, Huang H, Shu K. 2023. Seedling establishment: The neglected trait in the seed longevity field. Plant Physiol Biochem 200: 107765. DOI: 10.1016/j.plaphy.2023.107765.
Rivai RR, Wardani FF, Devi MG. 2015. Germination and breaking seed dormancy of Alpinia malaccensis. Nusantara Biosci 7 (2): 67-72. DOI: 10.13057/nusbiosci/n070202.
Silva RS, Ribeiro LM, Mercadante-Simões MO, Nunes YRF, Lopes PSN. 2014. Seed structure and germination in buriti (Mauritia flexuosa), the swamp palm. Flora 209 (11): 674-685. DOI: 10.1016/j.flora.2014.08.012.
Smith JR, Bagchi R, Ellens J, Kettle CJ, Burslem DFRP, Maycock CR, Khoo E, Ghazoul J. 2015. Predicting dispersal of auto-gyrating fruit in tropical trees: A case study from the Dipterocarpaceae. Ecol Evol 5 (9): 1794-1801. DOI: 10.1002/ece3.1469.
Susanto D, Ruchiyat D, Sutisna M, Amirta R. 2016. Flowering, fruiting, seed germination and seedling growth of Macaranga gigantea. Biodiversitas 17 (1): 192-199. DOI: 10.13057/biodiv/d170128.
Zulkarnaen RN, Helmanto H, Primananda E, Kusuma YWC, Robiansyah I. 2023. Population status and conservation of the threatened and endemic tree Vatica javanica subsp. javanica (Dipterocarpaceae). J Asia-Pac Biodivers 16(4): 653-657. DOI: 10.1016/j.japb.2023.08.008.