Comparative assessment of carbon dioxide (CO2) absorption capacities in Koompassia malaccensis and Hopea nervosa in Tekam Forest Reserve, Pahang, Malaysia

##plugins.themes.bootstrap3.article.main##

HASYA HANNANI RUZIMAN
AZIAN MOHTI
NURUL EMYLIANA SYAFIKA CHE YO
FAEZAH PARDI

Abstract

Abstract. Ruziman HH, Mohti A, Yo NESC, Pardi F. 2024. Comparative assessment of carbon dioxide (CO2) absorption capacities in Koompassia malaccensis and Hopea nervosa in Tekam Forest Reserve, Pahang, Malaysia. Nusantara Bioscience 16: 185-191. Trees, the dominant life form in forests, are essential in the functioning of the terrestrial biosphere, especially for the carbon cycle of the ecosystem. This study aims to assess CO2 absorption by two forest production species: Koompassia malaccensis Maingay and Hopea nervosa King. The experiment was carried out in an acrylic box, and the variation of carbon dioxide concentration, humidity, light, and temperature was measured using a Carbon Dioxide, Light, Temperature, and Humidity (CLTM) sensor. The experiment was conducted in an open area from 7:30 am to 6:30 am the next day (23 hours). The results showed that H. nervosa absorbed more CO2 (71.13 ppm/hour) than K. malaccensis (51.54 ppm/hour), thus promoting its ability to address climate change in the microenvironment. As for the relationship between carbon dioxide absorption and photosynthesis variables, both species show a positive correlation between CO2 absorption and humidity. In contrast, light and temperature were very weakly correlated to CO2. Therefore, it was identified that H. nervosa (Dipterocarpaceae) and K. malaccensis (Fabaceae) are tree species with high CO2 absorption capacity and thus can be considered suitable trees for replanting, especially in light of carbon mitigation initiatives.

2019-01-01

##plugins.themes.bootstrap3.article.details##

References
Alves PL, Magalhães AN, Barja PR. 2002. The phenomenon of photoinhibition of photosynthesis and its importance in reforestation. Bot Rev 68 (2): 193-208. DOI: 10.1663/0006-8101(2002)068[0193:TPOPOP]2.0.CO;2.
Asanok L, Kamyo T, Marod D. 2020. Maximum entropy modeling for the conservation of Hopea odorata in riparian forests, central Thailand. Biodiversitas 21 (10): 4663-4670. DOI: 10.13057/biodiv/d211027.
Daud M, Bustam B, Harnelly E, Dharma, W. 2021. Carbon absorption capability of single-leaf and compound-leaf plants in the BNI Urban Forest, Banda Aceh. IOP Conf Ser: Earth Environ Sci 918 (1): 012027. DOI: 10.1088/1755-1315/918/1/012027.
Daud M, Bustam BM, Arifin B. 2019. A comparative study of carbon dioxide absorption capacity of seven urban forest plant species of Banda Aceh, Indonesia. Biodiversitas 20 (11): 3372-3379. DOI: 10.13057/biodiv/d201134.
Davis LA, Hidayati N. 2020. Carbon dioxide absorption and physiological characteristics of selected tropical lowland tree species for revegetation. IOP Conf Ser: Earth Environ Sci 591 (1): 012039. DOI: 10.1088/1755-1315/591/1/012039.
Fathurrahman F. 2023. Effects of carbon dioxide concentration on the growth and physiology of Albizia saman (Jacq.) Merr. J Ecol Eng 24 (9): 302-311. DOI: 10.12911/22998993/169145.
Hammer Ø, Harper DAT, Ryan PD. 2001. PAST: Paleontological Statistics Software Package for education and data analysis. Palaeontol Electron 4 (1): 1-9.
Kanniah KD, Muhamad N, Kang C. 2014. Remote sensing assessment of carbon storage by urban forest. IOP Conf Ser: Earth Environ Sci 18: 012151. DOI: 10.1088/1755-1315/18/1/012151.
Ministry of Energy and Natural Resources 2022. Malaysia Policy on Forestry. Koyak Kreatif Venture, Selangor.
Misni A, Jamaluddin S, Kamaruddin SM. 2015. Carbon sequestration through urban green reserve and open space. J Malays Inst Plan 8: 101-122. DOI: 10.21837/pm.v13i5.142.
Othman R, Suid S, Noor NSM, Baharuddin ZMH, Hashim KSH, Mahamod LH. 2019. Estimation of carbon sequestration rate of urban park with linear and curvilinear design landscape setting. Appl Ecol Environ Res 17 (4): 8089-8101. DOI: 10.15666/aeer/1704_80898101.
Pane MS, Yoza D, Sulaeman R. 2016. Potensi serapan karbon dioksida (CO2) pada pohon peneduh di Jalan Soekarno Hatta Kota Pekan Baru. Jom Faperta 3 (2): 1-8. [Indonesian]
Pearson TR, Brown S, Murray L, Sidman, G. 2017. Greenhouse gas emissions from tropical forest degradation: An underestimated source. Carbon Balance Manag 12: 3. DOI: 10.1186/s13021-017-0072-2.
Powles SB 1984. Photoinhibition of photosynthesis induced by visible light. Ann Rev Plant Physiol 35 (1): 15-44. DOI: 10.1146/annurev.pp.35.060184.000311.
Rahman HA. 2018. Climate change scenarios in Malaysia: Engaging the public. Intl J Malays-Nusantara Stud 1 (2): 55-77.
Rawson H, Begg J, Woodward R. 2004. The effect of atmospheric humidity on photosynthesis, transpiration and water use efficiency of leaves of several plant species. Planta 134: 5-10. DOI: 10.1007/BF00390086.
Sari MB, Yulkifli, Kamus Z. 2015. Sistem pengukuran intensitas dan durasi penyinaran matahari Realtime PC berbasis LDR dan motor stepper. Jurnal Otomasi, Kontrol & Instrumentasi 7 (1): 37-52. DOI: 10.5614/joki.2015.7.1.5. [Indonesian]
Suwanmontr C, Kositanont C, Panich N. 2013. Carbon dioxide absorption of common trees in Chulalongkorn University. Modern Appl Sci 7 (3): 1-7. DOI: 10.5539/mas.v7n3p1.
Too CC, Keller A, Sickel W, Lee SM, Yule CM. 2018. Microbial community structure in a Malaysian tropical peat swamp forest: The influence of tree species and depth. Front Microbiol 9: 02859. DOI: 10.3389/fmicb.2018.02859.
Trisurat Y, Shrestha RP, Kjelgren R. 2011. Plant species vulnerability to climate change in Peninsular Thailand. Appl Geogr 31 (3): 1106-1114. DOI: 10.1016/j.apgeog.2011.02.007.
Wadanambi RT, Wandana LS, Chatumini KKGL, Dassanayake NP, Preethika DDP, Arachchige USPR. 2020. The effects of industrialization on climate change. J Res Technol Eng 1 (4): 86-94.
Wahidah MNL, Ahmad WFW, Nizam, Zain CRCM. 2017. Effects of elevated atmospheric CO2 on photosynthesis, growth and biomass in Shorea platycarpa F. Heim (Meranti Paya). Sains Malays 46 (9): 1421-1428. DOI: 10.17576/jsm-2017-4609-10.
Yacob MNM. 2021. Estimating carbon sequestration of green roof plants in tropical climate. Intl J Integr Eng 13 3: 200-206. DOI: 10.30880/ijie.2021.13.03.024.
Yarn KF, Yu KC, Huang JM, Luo WJ, Wu PC. 2013. Utilizing a vertical garden to reduce indoor carbon dioxide in an indoor environment. Wulfenia 20 (10): 180-194.
Yunusa A, Linatoc AC. 2018. Inventory of vegetation and assessment of carbon storage capacity towards a low carbon campus: A case study of Universiti Tun Husein Onn Malaysia, Johor Malaysia. Path Sci 4 (12): 3001-3006. DOI: 10.22178/pos.41-3.
Zafriakma N, Masran MN, Ahmad DD, Nazli MW, Zakaria R, Karim MKA, Amaludin NA. 2020. Preliminary study on tree species composition, diversity and biomass of Dipterocarpus and Hopea genera of Bukit Bakar Forest Eco Park, Machang, Kelantan. IOP Conf Ser: Earth Environ Sci 549 (1): 012037. DOI: 10.1088/1755-1315/549/1/012037.