Nutritional composition and antioxidant properties of calamansi (Citrus microcarpa) peels in different drying processes

##plugins.themes.bootstrap3.article.main##

KEZIA ESTHER T. ABAL
CASIANO H. CHORESCA JR.
FERNAND F. FAGUTAO
GWEN ANUEVO
MARY JANE S. APINES-AMAR
FERNIE A. CATIENZA
FIONA L. PEDROSO

Abstract

Abstract. Abal KET, Choresca Jr. CH, Fagutao FF, Anuevo G, Apines-Amar MJS, Catienza FA, Pedroso FL. 2024. Nutritional composition and antioxidant properties of calamansi (Citrus microcarpa) peels in different drying processes. Nusantara Bioscience 16: 292-296. Calamansi (Citrus microcarpa Bunge) is abundantly grown in the Philippines and is primarily utilized for its juice, resulting in peels as a waste product. This study aimed to evaluate the effects of different drying techniques (sun-drying, dehydration, and oven-drying) on the nutritional composition and antioxidant properties of calamansi peels. The dried samples were analyzed for nutritional content such as protein, fiber, fat, ash, carbohydrates, and moisture. Antioxidant properties were also measured through a DPPH scavenging activity assay, including total phenolic content and total flavonoid content. The results showed that Calamansi Dehydrated (CDD) had a significantly higher protein and fiber content than oven-dried and sundried, and calamansi oven-dried (COD) peels had the highest carbohydrate, fat, moisture, and ash content. Calamansi Sundried (CSD) has a significantly highest value of 21.04±2.44% scavenging activity, followed by CDD (20.79±5.43% scavenging activity), and then COD (8.91±1.89% scavenging activity) in DPPH assay. For Total Phenolic Content (TPC), CDD has a significantly higher value of 192.6±21.99 mg gallic acid equivalent (GAE) L-1 dry sample, followed by CSD and COD, with 145.7±6.54 mg GAE L-1 dry sample and 70.7±8.87 mg GAE L-1 dry sample, respectively. CSD had the highest value in Total Flavonoid Content (TFC) of 163.3±1.90 mg catechin equivalent (CE L-1 dry sample ) mg catechin Equivalent (CE) L-1 dry sample, followed by COD (121.0±6.87 mg CE L-1 sample), and CDD (41.9±6.25 mg CE L-1 sample. The findings suggest sun-drying and dehydration as drying techniques resulted in higher antioxidant properties and economic viability.

2019-01-01

##plugins.themes.bootstrap3.article.details##

References
Ahn HY, Cho HD, Cho YS. 2020. Comparison of antioxidant effect and phenolic compounds in tropical fruits. SN Appl Sci 2: 1120. DOI: 10.1007/s42452-020-2927-5.
Alinejhad D, Asayesh MA, Asayesh, M. 2016. Determination of the anti-inflammatory property of tannins from the rind of calamansi (Citrus microcarpa, Rutaceae). J Intl Oral Health 8 (5): 546-553. DOI: 10.2047/jioh-08-05-04.
Angelino D, Godos J, Ghelfi F et al. 2019. Fruit and vegetable consumption and health outcomes: An umbrella review of observational studies. Intl J Food Sci Nutr 70 (6): 652-667. DOI: 10.1080/09637486.2019.1571021.
Antony A, Farid M. 2022. Effect of temperatures on polyphenols during extraction. Appl Sci 12 (4): 2107. DOI: 10.3390/app12042107.
Chavan P, Singh AK, Kaur G. 2018. Recent progress in the utilization of industrial waste and by?products of citrus fruits: A review. J Food Process Eng 41 (8): e12895. DOI: 10.1111/jfpe.12895.
Cheong MW, Chong ZS, Liu SQ, Zhou W, Curran P, Yu B. 2012. Characterisation of calamansi (Citrus microcarpa). Part I: Volatiles, aromatic profiles and phenolic acids in the peel. Food Chem 134 (2): 686-695. DOI: 10.1016/j.foodchem.2012.02.162.
Elmsaad E, Omran A, Emam A, Elmahi O, Amer B. 2024. Performance evaluation and analysis of different simple thermal modeling of greenhouse dryer. Front Sustain Food Syst 8: 1304584. DOI: 10.3389/fsufs.2024.1304584.
Farahmandfar R, Tirgarian B, Dehghan B, Nemati A. 2020. Comparison of different drying methods on bitter orange (Citrus aurantium L.) peel waste: Changes in physical (density and color) and essential oil (yield, composition, antioxidant and antibacterial) properties of powders. J Food Meas Charact 14: 862-875. DOI: 10.1007/s11694-019-00334-x.
Ganesh KS, Sridhar A, Vishali S. 2022. Utilization of fruit and vegetable waste to produce value-added products: Conventional utilization and emerging opportunities-A review. Chemosphere 287: 132221. DOI: 10.1016/j.chemosphere.2021.132221.
Hossain MA, Rahman SMM. 2010. Total phenolics, flavonoids, and antioxidant activity of tropical fruit pineapple. Food Res Intl 44 (3): 672-676. DOI: 10.1016/j.foodres.2010.11.036.
Idquival JLA, Layog PMP, Victoria CGC, Rosete MAL. 2023. An analysis of the citrus industry in Nueva Vizcaya, Philippines. Intl J Res Eng Sci Manag 6 (12): 144-153.
Jayawardena SR, Morton JD, Bekhit AEDA, Bhat ZF, Brennan CS. 2022. Effect of drying temperature on nutritional, functional and pasting properties and storage stability of beef lung powder, a prospective protein ingredient for food supplements. LWT 161: 113315. DOI: 10.1016/j.lwt.2022.113315.
Kesbiç OS, Acar Ü, Mohammady EY, Salem SM, Ragaza, JA, El?Haroun E, Hassaan MS. 2022. The beneficial effects of citrus peel waste and its extract on fish performance and health status: A review. Aquac Res 53 (12): 4217-4232. DOI: 10.1111/are.15945.
Kittibunchakul S, Temviriyanukul P, Chaikham P, Kemsawasd V. 2023. Effects of freeze drying and convective hot-air drying on predominant bioactive compounds, antioxidant potential and safe consumption of maoberry fruits. LWT 184: 114992. DOI: 10.1016/j.lwt.2023.114992.
Lim TK. 2012. Citrus x microcarpa. In: Lim TK (eds). Edible Medicinal and Non-Medicinal Plants. Springer, Dordrecht. DOI: 10.1007/978-94-007-4053-2_99.
Mahmood MH, Osama AK, Makky EA, Rahim MH, Ali NHM, Hazrudin ND. 2019. Phytochemical Screening, antimicrobial and antioxidant efficacy of some plant extracts and their mixtures. IOP Conf Ser Earth Environ Sci 346 (1): 012003. DOI: 10.1088/1755-1315/346/1/012003.
Mapalo NG, Rosillo-Magno AP. 2018. Morphological events on the development of flowers, fruits, and seeds of calamansi (XCitrofortunella microcarpa Bunge). J Sci Eng Technol 6: 160-168. DOI: 10.13140/RG.2.2.21298.12489.
Maqbool Z, Khalid W, Atiq HT, Koraqi H, Javaid Z, Alhag SK, Al-Farga A. 2023. Citrus waste as a source of bioactive compounds: Extraction and utilization in health and food industry. Molecules 28 (4): 1636. DOI: 10.3390/molecules28041636.
Muñoz-Fariña O, López-Casanova V, García-Figueroa O, Roman-Benn A, Ah-Hen K, Bastias-Montes JM., Quevedo-León R, Ravanal-Espinosa MC. 2023. Bioaccessibility of phenolic compounds in fresh and dehydrated blueberries (Vaccinium corymbosum L.). Food Chem Adv 2: 100171. DOI: 10.1016/j.focha.2022.100171.
Onwude DI, Iranshahi K, Rubinetti D, Schudel S, Schemminger J, Martynenko A, Defraeye T. 2022. How much do process parameters affect the residual quality attributes of dried fruits and vegetables for convective drying? Food Bioprod Process 131: 176-190. DOI: 10.1016/j.fbp.2021.11.005.
Panwar D, Saini A, Panesar PS, Chopra, HK. 2021. Unraveling the scientific perspectives of citrus byproducts utilization: Progress towards the circular economy. Trends Food Sci Technol 111: 549-562. DOI: 10.1016/j.tifs.2021.03.018.
Pascariu SM, Pop IM, Albu A. 2014. Degradation degree of polyphenols depending on drying temperature of the grape pomace. Bull Univ Agric Sci Vet Med Cluj-Napoca Anim Sci Biotechnol 71 (2): 212-217. DOI: 10.15835/buasvmcn-asb:10311.
Philippine Statistics Authority (PSA). Major Fruit Crops Quarterly Bulletin, April-June 2023 Vol.12 No.2. Retrieved January 23, 2024. URL: https://psa.gov.ph/system/files/csd/Major%20Fruit%20Crops%20Quarterly%20Bulletin%2C%20April-June%202023.pdf
Putra RN, Ajiwiguna TA. 2017. Influence of air temperature and velocity for drying process. Procedia Eng 170: 516-519. DOI: 10.1016/j.proeng.2017.03.082.
Quijano MF, Quijano G, Diaz R. 2021. Agricultural economic production of Philippine calamansi industry: A basis for production local development plan. Preprints 2021: 2021020388. DOI: 10.20944/preprints202102.0388.v1.
Rocha ICN, Roque SJR, Tanyag LG, Reyes KA, Sigui MAMM. 2020. Effect of Citrofortunella microcarpa (calamansi) peelings on whole blood coagulation using blood samples from albino mice. J Complement Altern Med Res 12 (1): 51-56. DOI: 10.9734/jocamr/2020/v12i130200.
Rodeo AJD. 2016. The Philippine fruit industry: An overview. Proc Conf Intl Train Workshop Cultiv Tech Fruit Trees 2016: 10-24.
Sagar NA, Pareek S, Sharma S, Yahia EM, Lobo MG. 2018. Fruit and vegetable waste: Bioactive compounds, their extraction, and possible utilization. Compr Rev Food Sci Food Saf 17 (3): 512-531. DOI: 10.1111/1541-4337.12330.
Saini RK, Shetty NP, Prakash M, Giridhar P. 2014. Effect of dehydration methods on retention of carotenoids, tocopherols, ascorbic acid and antioxidant activity in Moringa oleifera leaves and preparation of an RTE product. J Food Sci Technol 51 (9): 2176-2182. DOI: 10.1007/s13197-014-1264-3.
Sarkar A, Haque MA, Alam M. 2024. Unlocking the potential of pomegranate peels as a valuable source of bioactive compounds through effective drying strategies. Food Chem Adv 4: 100622. DOI: 10.1016/j.focha.2024.100622.
Siriwattananon L, Maneerate J. 2016. Effect of drying methods on dietary fiber content in dried fruit and vegetable from non-toxic agricultural field. GEOMATE J 11 (28): 2896-2900. DOI: 10.21660/2016.28.1372.
Tonogbanua KA, Espino RRC, Espino MRM. 2018. Diversity analysis of Philippine citrus collection using simple sequence repeat markers. PJCS 43 (3): 47-56.
Turkmen F, Karasu S, Karadag A. 2020. Effects of different drying methods and temperature on the drying behavior and quality attributes of cherry laurel fruit. Processes 8 (7): 761. DOI: 10.3390/pr8070761.
Wahdaningsih S, Rizkifani S, Untari EK, Rinaldi W. 2023. Effect of drying method on levels of antioxidant activity, total flavonoid levels, and total phenol levels in ethanol extract of bawang dayak (Eleutherine americana) leaves. Majalah Obat Tradisional 28 (1): 37-39. DOI: 10.22146/mot.80085.
Wang S, Tu H, Wan J, Chen W, Liu X, Luo J, Zhang H. 2016. Spatio-temporal distribution and natural variation of metabolites in citrus fruits. Food Chem 199: 8-17. DOI: 10.1016/j.foodchem.2015.11.113.
Zhong G, Nicolosi E. 2020. Citrus origin, diffusion, and economic importance. In: Gentile A, Malfa SL, Deng Z (eds). The Citrus Genome. Springer, Cham. DOI: 10.1007/978-3-030-15308-3_2.
Zou Z, Xi W, Hu Y, Nie C, Zhou Z. 2016. Antioxidant activity of Citrus fruits. Food Chem 196: 885-896. DOI: 10.1016/j.foodchem.2015.09.072.