Spatial models of suitable sandy substrates for brittle star community conservation in Sancang Coast, West Java, Indonesia

##plugins.themes.bootstrap3.article.main##

PURWATI KUSWARINI SUPRAPTO
IKA RAYMITA HUSNA
VITA MEYLANI
ADI BASUKRIADI
ANDRIO A. WIBOWO
ERWIN NURDIN

Abstract

Abstract. Suprapto PK, Husna IR, Meylani V, Basukriadi A, Wibowo AA, Nurdin E. 2022. Spatial models of suitable sandy substrates for brittle star community conservation in Sancang Coast, West Java, Indonesia. Indo Pac J Ocean Life 6: 87-93. The brittle star is known as one of the echinoids with the largest members. Currently, brittle star species are threatened due to harvests for fulfilling decorative species demands in aquariums. This study aims to determine suitable sandy substrates for the brittle star community in Sancang Coast, West Java, Indonesia, in three representative stations. Brittle star presences and environmental variables were surveyed using belt transect methods, and sandy substrate suitability was determined using scoring and an interpolation method aided by GIS. Results show three species belong to the Ophiocomidae, with Ophiocoma scolopendrina (Lamarck, 1816) (brittle lagoon star) being the most abundant. About 394,631 m2 of sandy substrates were available, and an estimated 47.52% is considered very suitable for brittle stars. Most suitable sandy substrates were located on the West side, characterized by low water temperature, high salinity, and alkaline water. In contrast, less suitable sandy substrates were located on the coast's east side, characterized by high water temperature, low salinity, and acidic water. To conclude, this research has identified which parts of the Sancang Coast should be prioritized to conserve brittle stars.

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
Angreni F, Litaay M, Priosambodo D, Moka W. 2017. Community structure of echinoderm in seagrass meadow of Tanakeke Island, Takalar Regency, South Sulawesi. J Biologi Makassar 2: 46-55. 10.20956/bioma.v2i1.1966. [Indonesian]
Barros GD, Fonseca ALDO, Santos ACD, Fontes MLS, Varela ARD, Franco D. 2017. Nutrient distribution in a shallow subtropical lagoon, South Brazil, subjected to seasonal hypoxic and anoxic events. Braz J Oceanogr 65: 116-127. DOI: 10.1590/s1679-87592017101206502.
Boitt M, Aete E, Erick OA. 2021. Identification and mapping of essential fish using remote sensing and GIS on Lake Victoria, Kenya. J Geosci Environ Prot 9: 91-109. DOI: 10.4236/gep.2021.910007.
Brauko K, Cabral A, Costa N, Hayden J, Dias C, Leite E, Westphal R, Mueller C, Hall-Spencer J, Rodrigues R, Rörig L, Pagliosa P, Fonseca A, Alarcon O, Horta P. 2020. Marine heatwaves, sewage and eutrophication combine to trigger deoxygenation and biodiversity loss: A SW Atlantic case study. Front Mar Sci 7: 590258. DOI: 10.3389/fmars.2020.590258.
Brauko KM, Muniz P, Martin CC, Lana PC. 2016. Assessing the suitability of five benthic indices for environmental health assessment in a large subtropical South American estuary. Ecol Indic 64: 258-265. DOI: 10.1016/j.ecolind.2016.01.008.
Cabral A, Bercovich MV, Fonseca A. 2019. Implications of poor-regulated wastewater treatment systems in the water quality and nutrient fluxes of a subtropical coastal lagoon. Region Stud Mar Sci 29: 100672. DOI: 10.1016/j.rsma.2019.100672.
Christensen AB, Radivojevich KO, Pyne MI. 2017. Effects of CO2, pH and temperature on respiration and regeneration in the burrowing brittle stars Hemipholis cordifera and Microphiopholis gracillima. J Exp Mar Biol Ecol 495: 13-23. DOI: 10.1016/j.jembe.2017.05.012.
Fang J, Zhang J, Liu Y, Jiang Z, Mao Y, Fang J. 2014. Effects of temperature and salinity on mortality and metabolism of Ophiopholis mirabilis. Mar Biol Res 11: 157-167. 10.1080/17451000.2014.904884.
Geraldi N, Bertolini C, Emmerson M, Roberts D, O'Connor N. 2016. Aggregations of brittle stars can provide similar ecological roles as mussel reefs. Mar Ecol Prog Ser 563: 157-167. DOI: 10.3354/meps11993.
Hu MY, Casties I, Stumpp M, Ortega-Martinez O, Dupont ST. 2014. Energy metabolism and regeneration impaired by seawater acidification in the infaunal brittlestar, Amphiura filiformis. J Exp Biol 217 (13): 2411-2421. DOI: 10.1242/jeb.100024.
Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, Singh GS, Duarte CM. 2013. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Glob Change Biol 19: 1884-1896. DOI: 10.1111/gcb.12179.
Lafite N, Christoffersen M, Gondim A. 2021. Feeding biology of the brittlestar Ophioderma appressum (Say, 1825) (Echinodermata, Ophiuroidea) in a tropical shallow reef from the Brazilian coast. Mar Biol Res 17: 286-294. DOI: 10.1080/17451000.2021.1943753.
Lau S, Strugnell J, Sands C, Silva C, Wilson N. 2021. Evolutionary innovations in Antarctic brittle stars linked to glacial refugia. Ecol Evol 11: 1-19. DOI: 10.1002/ece3.8376.
Martín-Ledo R, González P. 2013. Brittle stars from Southern Ocean (Echinodermata: Ophiuroidea). Polar Biol 37: 73-88. DOI: 10.1007/s00300-013-1411-8.
Meixler M, Bain M. 2012. A GIS framework for fish habitat prediction at the river basin scale. Intl J Ecol 2012: 146073. DOI: 10.1155/2012/146073.
Muyassaroh, Sulistiyawati, Luthfi MJ. 2021. Morphology and anatomy histology of brittle star (Ophiocoma dentata). Proc Internat Conf Sci Eng 4: 115-118.
Muzaki FK, Setiawan E, Insany GFA, Dewi NK, Subagio IB. 2019. Community structure of Echinoderm sin seagrass beds of Pacitan beaches, East Java, Indonesia. Biodiversitas 20: 1787-1793. DOI: 10.13057/biodiv/d200701.
Nishi R, Tsurunari Y, Hosotani K Leon M, Matsumoto I, Sasaki H. 2015. Impact of offshore sand mining on sandy beach in coral reef environment - case study in Kinenhama Beach, Tokunoshima Island, Japan. J Japan Soc Civil Eng Ser B3 (Ocean Eng) 71: 772-777. DOI: 10.2208/jscejoe.71.i_772.
O'Hara TD, Rowden AA, Bax NJ 2011. A southern hemisphere bathyal fauna is distributed in latitudinal bands. Curr Biol 21: 226-230. DOI: 10.1371/journal.pone.0031940.
Pakpahan HL, Irwani I, Widowati I. 2020. Komposisi dan kelimpahan Ophiuroidea dan Echinoidea di Perairan Pantai Pok Tunggal, Gunung Kidul, Yogyakarta. J Mar Res 9 (2): 109-118. DOI: 10.14710/jmr.v9i2.26101. [Indonesian]
Paujiah E, Kinasih I, Hawa P, Widiana A, Kurniati T, Cahyanto T. 2018. Distribution of brittle star (Ophiuroidea) on Rancabuaya Coastal Areas, Garut, West Java. IOP Conf Ser: Mater Sci Eng 434: 012124. DOI: 10.1088/1757-899X/434/1/012124.
Raghunathan C, Sadhukhan K, Mondal T, Sivaperuman C, Venkataraman K. 2013. A Guide to Common Echinoderms of Andaman and Nicobar Islands. Zoological Survey of India, India.
Scherner F, Horta PA, Oliveira EC, Simonassi JC, Hall Spencer JM, Chow F. 2013. Coastal urbanization leads to remarkable seaweed species loss and community shifts along the SW Atlantic. Mar Pollut Bull 76: 106-115. DOI: 10.1016/j.marpolbul.2013.09.019.
Souza FM, Brauko KM, Lana PC, Muniz P, Camargo MG. 2013. The effect of urban sewage on benthic macrofauna: A multiple spatial scale approach. Mar Pollut Bull 67: 234-240. DOI: 10.1016/j.marpolbul.2012.10.021.
Stöhr S, O'Hara TD, Thuy B. 2012. Global diversity of brittle stars (Echinodermata: Ophiuroidea). PLoS ONE 7 (3): e31940. DOI: 10.1371/journal.pone.0031940.
Susetya. 2019. Community structure of echinoderms in seagrass ecosystem of Pandaratan Beach, Tapanuli Tengah Regency, North Sumatera. IOP Conf Ser: Earth Environ Sci 260: 012107. DOI: 10.1088/1755-1315/260/1/012107.
Wood H, Spicer J, Kendall l, Lowe D, Widdicombe S. 2011. Ocean warming and acidification; implications for the Arctic brittlestar Ophiocten sericeum. Polar Biol 34: 1033-1044. DOI: 10.1007/s00300-011-0963-8.
Yu K, Chan K, Grünbaum D, Arnberg M, Dupont S, Chan K. 2015. Impacts of ocean acidification on survival, growth, and swimming behaviours differ between larval urchins and brittlestars. ICES J Mar Sci 73. DOI: 10.1093/icesjms/fsv073.