Estimation of aboveground carbon stock based on mangrove zones in Ijo River Estuary, Ayah Village, Kebumen, Indonesia

##plugins.themes.bootstrap3.article.main##

SESILIA RETNO AYU NINGTYAS
AIKO YHOVIERA FARRAZ MU’ALI
DANASTRI NUR ATHAYA RADYA PUTRI
NIMAS WAHYU SILANINGTYAS
FATIYA AZMA TSABITA
MUHAMMAD KUKUH APRIANTO
SILVI PUSPITA SARI
MUTHI’AH DZAKIYYATUL FAUZIYYAH
RACHEL SANISCARA NUGRAHENI
SARWENDAH DWI JUNIATI
MUKHLISAH NADYA ISA
HERLINA NOFITASARI
SUTARNO
SUGIYARTO
CHEE KONG YAP
SUGENG BUDIHARTA
AHMAD DWI SETYAWAN

Abstract

Abstract. Ningtyas SRA, Mu’ali AYF, Putri DNAR, Silaningtyas NW, Tsabita FA, Aprianto MK, Sari SP, Fauziyyah MD, Nugraheni RS, Juniati SD, Isa MN, Nofitasari H, Sutarno, Sugiyarto, Yap CK, Budiharta S, Setyawan AD. 2023. Estimation of aboveground carbon stock based on mangrove zones in Ijo River Estuary, Ayah Village, Kebumen, Indonesia. Indo Pac J Ocean Life 7: 148-155. The increasing concentration of greenhouse gases, including carbon dioxide in the atmosphere is the driver of global warming which triggers climate change. One strategy to mitigate climate change is reducing carbon emissions and increasing the carbon stock. Mangrove forest is recognized as the largest carbon sink on the Earth, therefore, the conservation and restoration of mangrove forest are increasingly promoted as an effective way to tackle climate change. While many studies assess the carbon stock of mangrove forests, a context-specific assessment is needed to enrich the existing studies in this field. This study aimed to investigate the aboveground carbon stored in vegetation occurring in three mangrove zones (i.e., seaward, middle and landward zones) in Ijo River Estuary, Ayah Village, Kebumen, Central Java, Indonesia. Purposive sampling on each mangrove zone was conducted with vegetation data at tree and pole stages collected using nested plot methods. Aboveground biomass was calculated using an allometric equation while carbon stock was estimated using the method of the National Standardization Agency. In total, there were 11 mangrove species in the observation plots, consisting of seven true mangrove species and four mangrove associates. The seaward zone had five species and an amount of aboveground biomass (29324.07 MgB/ha), while the middle zone consisted of five species and had biomass of 52776.62 MgB/ha, and the landward zone was composed of five species and had biomass of 6428.74 MgB/ha. The carbon stock in the seaward, middle and landward zones were 43.06, 197.42 and 186.00 MgC/ha, respectively. In total, the Ayah Mangrove Forest contained aboveground biomass of 88529.43 MgB/ha, equal to 1143.31 MgC/ha carbon stock. The findings of this study reiterate the importance of conserving mangrove forests as an effective way to reduce carbon emissions which are the major cause of global warming.

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
Dharmawan IWE, Zamani NP, Madduppa HH. 2016. Laju dekomposisi serasah daun di ekosistem bakau Pulau Kelong, Kabupaten Bintan. Oseanologi dan Limnologi di Indonesia 1 (1): 1-10. DOI: 10.14203/oldi.2016.v1i1.8. [Indonesian]
Dinilhuda A, Akbar AA, Herawaty H. 2020. Potentials of mangrove ecosystem as storage of carbon for global warming mitigation. Biodiversitas 21 (11): 5353-5362. DOI: 10.13057/biodiv/d211141.
DITJEN PPI MENLHK. 2017. Mengenai Perubahan Iklim. http://ditjenppi.menlhk.go.id/kcpi/index.php/info-iklim/perubahan-iklim. [Indonesian]
Eddy S, Ridho MR, Iskandar I, Mulyana A. 2019. Species composition and structure of degraded mangrove vegetation in the Air Telang Protected Forest, South Sumatra, Indonesia. Biodiversitas 20 (8): 2119 -2127. DOI: 10.13057/biodiv/d200804.
Gerard M, Vanderplanck M, Thomas W, Miches D. 2020. Global warming and plant-pollinator mismatches. Emerg Top Life Sci 4: 77-86. DOI: 10.1042/ETLS20190139.
Halizah WN, Puspitasari C. 2017. Pengembangan propagul kering tanaman bakau (Rhizophora sp.) sebagai pewarna alam dengan teknik celup rintang. E-Proc Art Design 4 (3): 1-9. [Indonesian]
Hamilton SE, Friess DA. 2018. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nat Clim Change 8 (3): 240-244. DOI: 10.1038/s41558-018-0090-4.
Harishma KM, Sandeep S, Sreekumar VB. 2020. Biomass and carbon stocks in mangrove ecosystems of Kerala, Southwest Coast of India. Ecol Proc 9 (1): 1-9. DOI: 10.1186/s13717-020-00227-8.
Hong LC, Hemati ZH, Zakaria RM. 2017. Carbon stock evaluation of mangrove forest selection in Peninsular Malaysia and its potential market value. Environ Sci Manag 20 (2): 77-87. DOI: 10.47125/jesam/2017_2/09.
Irsadi A, Martuti NKT, Nugraha SB. 2017. Estimasi stok karbon mangrove di Dukuh Tapak Kelurahan Tugurejo Kota Semarang. Jurnal Sains dan Teknologi 15 (2): 119-127. [Indonesian]
Krauss KW, McKee KL, Lovelock CE, Cahoon DR, Saintilan N, Reef R, Chen L. 2014. How mangrove forests adjust to rising sea level. New Phytol 202 (1): 19-34. DOI: 10.1111/nph.12605.
Luo YY, Vorsatz LD, Not C, Cannicci S. 2022. Landward zones of mangroves are sinks for both land and water borne anthropogenic debris. Sci Total Environ 818: 1-10. DOI: 10.1016/j.scitotenv.2021.151809.
Mahmood H, Siddique MRH, Islam SM, Abdullah SM, Matieu H, Iqbal M, Akhter M. 2020. Applicability of semi-destructive method to derive allometric model for estimating aboveground biomass and carbon stock in the Hill zone of Bangladesh. J For Res 31 (4): 1235-1245. DOI: 10.1007/s11676-019-00881-5.
Manabe S. 2019. Role of greenhouse gas in climate change. Tellus A 71: 1-13. DOI: 10.1080/16000870.2019.1620078.
Martuti NKT. 2013. Keanekaragam mangrove di Wilayah Tapak, Tugurejo, Semarang. Jurnal MIPA 36 (2): 123-130. [Indonesian]
Mughofar A, Masykuri M, Setyono P. 2018. Zonasi dan komposisi vegetasi hutan mangrove Pantai Cengkrong, Desa Karanggandu, Kabupaten Trenggalek, Provinsi Jawa Timur. Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan 8 (1): 77-85. DOI: 10.29244/jpsl.8.1.77-85. [Indonesian]
Mulyana B, Purwanto RH, Sari PI, Hidayatullah MF, Marpaung AA, Putra ISR, Putra AD. 2021. The environmental services of Pangarengan mangrove forest in Cirebon, Indonesia: Conserving biodiversity and storing carbon. Biodiversitas 22 (12): 5609-5615. DOI: 10.13057/biodiv/d221246.
National Standardization Agency. 2011. Standar Nasional Indonesia No. 7724 tentang Pengukuran dan penghitungan Cadangan Karbon Pengukuran Lapangan untuk Penaksiran Cadangan Karbon Hutan (Ground based Forest Carbon Accounting). Jakarta. [Indonesian]
Pattimahu DV, Litiloly LI, Mardiatmoko G. 2020. Analysis of vegetation and mangrove biomass to tackle climate change in Eastern Indonesia. Asian J Microbiol Biotech Environ Sci 22 (3): 528-534. DOI: 10.30598/jhppk.2020.4.1.22.
Pham TD, Yokoya N, Bui DT, Yoshino K, Daniel AF. 2019. Remote sensing approaches for monitoring mangrove species, structure, and biomass: opportunities and challenges. Remote Sens 11 (3): 1-24. DOI: 10.3390/rs11030230.
Pimple U, Leadprathom K, Simonetti D, Sitthi A, Peters R, Pungkul S, Pravinvongvuthi T, Dessard H, Berger U, Siri-on K, Kemacheevakul P, Gond V. 2022. Assessing mangrove species diversity, zonation and functional indicators in response to natural, regerated, and rehabilitated succession. J Environ Manag 318: 1-17. DOI: 10.1016/j.jenvman.2022.115507.
Pratama MP, Wibawanto S. 2019. Pengaruh strategi green tourism differentiation terhadap kepuasan dan minat kunjung ulang wisatawan hutan mangrove di Kabupaten Kebumen. Jurnal Fokus Bisnis 18 (1): 8-15. DOI: 10.32639/fokusbisnis.v18i1.285. [Indonesian]
Purnomo E. 2020. Potensi karbon tersimpan pada ekosistem mangrove alami Taman Nasional Karimun Jawa. Biologica Samudra 2 (2): 121-127. [Indonesian]
Purwaningrum H. 2020. Pengembangan ekowisata hutan mangrove Pantai Baros Desa Titihargo Kecamatan Kretek Kabupaten Bantul. J Tour Econ 3 (1): 31-40. DOI: 10.36594/jtec.v3i1.52. [Indonesian]
Rosalina D, Rombe KH. 2021. Struktur dan komposisi jenis mangrove di Kabupaten Bangka Barat. Jurnal Airaha 10 (1): 99-108. DOI: 10.15578/ja.v10i01.219. [Indonesian]
Sarker S, Masud?Ul?Alam M, Hossain MS, Rahman CS, Sharifuzzaman SM. 2021. A review of bioturbation and sediment organic geochemistry in mangroves. Geol J 56 (5): 2439-2450. DOI: 10.1002/gj.3808.
Schmidt HP, Anca Couce A, Hagemann N, Werner C, Gerten D, Lucht W, Kammann C. 2019. Pyrogenic carbon capture and storage. GCB Bioenerg 11 (4): 573-591. DOI: 10.1111/gcbb.12553.
Siringoringo HH, Narendra BH, Salim AG. 2018. Kualitas perairan mangrove di Ciasem, Pamanukan, Kabupaten Subang, Jawa Barat. Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan 8 (3): 301-307. DOI: 10.29244/jpsl.8.3.301-307. [Indonesian]
Sumanto S. 2020. Inventarisasi tumbuhan mangrove dalam rangka rehabilitasi hutan bakau di Pesisir Pantai Paojepe Desa Paojepe Kecamatan Keera Kabupaten Wajo Propinsi Sulawesi Selatan. Prosiding SNPBS (Seminar Nasional Pendidikan Biologi dan Saintek) Ke-5 2020: 186-190. [Indonesian]
Sunarni S, Maturbongs MR, Arifin T, Rahmania R. 2019. Zonasi dan struktur komunitas mangrove di Pesisir Kabupaten Merauke. Jurnal Kelautan Nasional 14 (3): 165-178. DOI: 10.15578/jkn.v14i3.7961. [Indonesian]
Syah AF. 2020. Penanaman mangrove sebagai upaya pencegahan abrasi di Desa Socah. Jurnal Ilmiah Pangabdhi 6 (1): 13-16. DOI: 10.21107/pangabdhi.v6i1.6909. [Indonesian]
Triana V. 2018. Pemanasan global. Jurnal Kesehatan Masyarakat 2 (2): 159-163. DOI: 10.24893/jkma.2.2.159-163.2008. [Indonesian]
Widyastuti A, Yani E, Nasution EK, Rochmatino. 2018. Diversity of mangrove vegetation and carbon sink estimation of Segara Anakan Mangrove Forest, Cilacap, Central Java, Indonesia. Biodiversitas 19 (1): 246-252. DOI: 10.13057/biodiv/d190133.
Yuliana E, Hewindati YT, Winata ADI, Djatmiko WA, Rahadiati ATI. 2019. Diversity and characteristics of mangrove vegetation in Pulau Rimau protection forest, Banyuasin District, South Sumatra, Indonesia. Biodiversitas 20 (4): 1215-1221. DOI: 10.13057/biodiv/d200438.