The red coralline alga Hydrolithon onkodes, an attractor of coral larvae, is photosynthetically more susceptible to thermal stress than Lithophyllum incrustans

##plugins.themes.bootstrap3.article.main##

MARIE JEAN SYLVIO PERRINE
SARVESH MUNDIL
DEEPEEKA KAULLYSING
RANJEET BHAGOOLI

Abstract

Abstract. Perrine MJS, Mundil S, Kaullysing D, Bhagooli R. 2023. The red coralline alga Hydrolithon onkodes, an attractor of coral larvae, is photosynthetically more susceptible to thermal stress than Lithophyllum incrustans. Indo Pac J Ocean Life 7: 91-99. Red Coralline Algae (RCAs) are important components of coral reefs and are involved in reef-building via calcification, cementation, the synthesis of anti-fouling compounds and of chemicals to aid recruitment, settlement and metamorphosis of reef species. This study aimed to investigate the distribution of RCAs at four sites around Mauritius Island and the effects of thermal stress on the effective photosynthetic yield of photosystem II (FPSII) of two species of RCA namely, Lithophyllum incrustans (Philippi, 1837) and Hydrolithon onkodes, known to attract coral larvae. Out of the nine RCA species observed, two non-geniculate RCAs, H. onkodes and L. incrustans, were among the most dominant, especially at the lagoonal and reef zones of the four studied sites Flic en Flac, Belle Mare, Trou aux Biches and Flat Island. These two RCAs were collected, acclimated for 24 hours on a 12h:12h dark-light cycle and then exposed to 27°C, 30°C and 33°C for 3 (T3), 6 (T6) and 19 (T19) hours. After 3, 6 and 19 hours, relative change in FPSII compared to initial (T0) was used for comparison among tested species. At 27°C the FPSII did not fluctuate significantly during the experiment for both RCAs. At a temperature 30°C only H. onkodes significantly decreased from 0.541 ± 0.54 at T0 to 0.445 ± 0.116 at T19. At 33°C, L. incrustans showed a significant decline of 24.82 ± 7.4% while H. onkodes decreased by 90 ± 12.6%. Visual observations revealed that H. onkodes changed from the initial healthy-looking color of light grey to pale purple after thermal exposure. These findings indicate that the coral larvae-attracting H. onkodes is more susceptible than the L. incrustans to thermal stress, implying subsequent possible impacts on coral recruitment process especially in the wake of climate change-driven ocean warming.

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
Adey WH, Townsend RA, Boykins WT. 1982. The crustose coralline algae (Rhodophyta: Corallinaceae) of the Hawaiian Island. Smithson Contrib Mar Sci 15: 1-74. DOI: 10.5479/si.01960768.15.1.
Adey WH. 1978. Algal ridges of the Caribbean Sea and West Indies. Phycologia 17: 361-367. DOI: 10.2216/i0031-8884-17-4-361.1.
Ballesteros E, Afonso-Carrillo J. 1995. Species records and distribution of shallow-water coralline algae in a western Indian Ocean coral reef (Trou d’Eau Douce, Mauritius). Bot Marina 38 (1-6): 203. DOI: 10.1515/botm.1995.38.1-6.203.
Basso D. 2012. Carbonate production by calcare-ous red algae and global change. In: Basso D, GrAnier B (Eds). Calcareous Algae and Global Change: From Identi?cation to Quanti?cation. Geodiversitas 34 (1): 13-33. DOI: 10.5252/g2012n1a2.
Bhagooli R, Kaullysing D. 2019. Seas of Mauritius-Chapter 12. In: Sheppard CCR (Eds). World Seas: An Environmental Evaluation, 2nd Edition, Volume II: The Indian Ocean to the Pacific. Elsevier, Netherlands. DOI: 10.1016/B978-0-08-100853-9.00016-6.
Bhagooli R, Mattan-Moorgawa S, Kaullysing D, Chumun PK, Klaus R, Munbodhe V. 2021d. Status and sustainability of reefs and shorelines of the Republic of Mauritius. In: Gunputh RP (Eds). Sustainable Development Goals. Star Publications Pvt. Ltd., New Delhi, India.
Bhagooli R, Mattan-Moorgawa S, Kaullysing D, Louis YD, Gopeechund A, Ramah S, Soondur M, Pilly SS, Beesoo R, Wijayawanti DP, Bachok ZB, Monrás VC, Casareto BE, Suzuki Y, Baker AC. 2021b. Chlorophyll fluorescence-a tool to assess photosynthetic performance and stress photo-physiology in symbiotic marine invertebrates and seaplants. Mar Pollut Bull 165: 112059. DOI: 10.1016/j.marpolbul.2021.112059.
Bhagooli R, Ramah S, Kaullysing D, Gopeechund A, Bergstad OA. 2021c. First field observations of Halimeda beds at depths of 37-62 m at Saya de Malha and Nazareth banks, Mascarene Plateau, Western Indian Ocean. West Indian Ocean J Mar Sci 2: 183-187. DOI: 10.4314/wiojms.si2021.2.14.
Bhagooli R, Soondur M, Ramah S, Gopeechund A, Kaullysing D. 2021a. A first study on the variable photo-physiological performance of macroalgae and seagrasses from Saya de Malha and Nazareth Banks, Mascarene Plateau. West Indian Ocean J Mar Sci 2: 95-108. DOI: 10.4314/wiojms.si2021.2.7.
Birrell CL, McCook LJ, Willis BL, Harrington L. 2008. Chemical effects of macroalgae on larval settlement of the broadcast spawning coral Acropora millepora. Mar Ecol Prog Ser 362: 129-137. DOI:10.3354/meps07524.
Bolton JJ, Bhagooli R, Mattio L. 2012. The Mauritian seaweed flora: Diversity and potential for sustainable utilization. Univ Mauritius Res J 18: 6-17.
Bramwell MD, Woelkerling WJ. 1984. Studies on the distribution of Pneophyllum-Fosliella plant (Corrallinaceae, Rhodophyta) on leaves of the seagrass Amphibolis antartica (Cymodoceaceae). Austral J Botany 32 (2): 131-137. DOI:10.1071/BT9840131.
Burdett HL, Hennige SJ, Francis, FT-Y, Kamenos NA. 2012. The photosynthetic characteristics of red coralline algae, determined using Pulse Amplitude Modulation (PAM) fluorometry. Bot Marina 55 (5): 499-509. DOI: 10.1515/bot-2012-0135.
de Clerck O, Coppejans E, Schils T, Verbruggen H, Leliaert F, de Vriese T, Marie D. 2004. The marine red algae of Rodrigues (Mauritius, Indian Ocean). J Nat Hist 38 (23): 3021-3057. DOI: 10.1080/00222930410001695033.
Elmer F, Bell JJ, Gardner JPA. 2018. Coral larvae change their settlement preference for crustose coralline algae dependent on availability of bare space. Coral Reefs 37: 397-407. DOI: 10.1007/s00338-018-1665-2.
Fabricius K, De'ath G. 2001. Environmental factors associated with the spatial distribution of crustose coralline algae on the Great Barrier Reef. Coral Reefs 19: 303-309. DOI:10.1007/s003380000120.
Foster MS. 2001. Rhodoliths: Between rocks and soft places. J Phycol 37: 659-67. DOI: 10.1046/j.1529-8817.2001.00195.x.
Gomez-Lemos LA, Doropoulos C, Bayraktarov E, Diaz-Pulido G. 2018. Coralline algal metabolites induce settlement and mediate inductive effect of epithytic microbes on coral larvae. Sci Rep 8: 17557. DOI: 10.1038/s41598-018-35206-9.
Gopeechund A, Bhagooli R, Neergheen VS, Bolton JJ, Bahorun T. 2020. Anticancer activities of marine macroalgae: Status and future perspectives. In Ozturk M, Egamberdieva D, Pesi´ M (Eds). Biodiversity and Biomedicine: Our Future. Chapter 14. Academic Press, Elsevier. DOI: 10.1016/B978-0-12-819541-3.00014-1.
Jentsch A, Kreyling J, Beierkuhnlein J. 2007. A new generation of climate-change experiment: event, not trends. Front Ecol Environ 5: 365-374. DOI: 10.1890/1540-9295(2007)5[365:ANGOCE]2.0.CO;2.
Kaullysing D, Gopeechund A, Mattan-Moorgawa S, Taleb-Hossenkhan N, Kulkarni B, Bhagooli R. 2016 Increased density of the corallivore Drupella cornus on Acropora muricata colonies overgrown by Padina boryana. Proceedings of the 13th International Coral Reef Symposium. Honolulu, Hawaii.
Kennedy EV, Ordonez A, Lewis BE, Diaz-Pulido G. 2017. Comparison of recruitment tile materials for monitoring coralline algae responses to a changing climate. Mar Ecol Prog Ser 569: 129-144. DOI: 10.3354/meps12076.
Lei X, Huang H, Lian J, Zhou G, Lei J. 2018. Community structure of coralline algae and its relationship with environment in Sanva reef, China. Aquat Ecosyst Health Manag 21 (1): 19-29. DOI: 10.1080/14634988.2018.1432954.
Leujak W, Ormond RFG. 2008. Reef walking on Red Sea reef flats – Quantifying impacts and identifying motives. Ocean Coast Manag 51 (11): 755-762. DOI: 10.1016/j.ocecoaman.2008.07.002.
Martin S, Charnoz A, Gattusa JP. 2013. Photosynthesis, respiration and calcification in the Mediterranean crustose coralline algae Lithophyllum cabiochae (Corrallinales, Rhodophyta). Eur J Phycol 48 (2): 163-172. DOI: 10.1080/09670262.2013.786790.
Martone PT, Alvono M, Stites S. 2010. Bleaching of an intertidal coralline alga: Untangling the effect of light, temperature and desiccation. Mar Ecol Prog Ser 416: 57-67. DOI: 10.3354/meps08782.
Masso-Delmotte V, Zhai P, Portner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufounma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T. 2018. IPCC Summary for Policymakers. Global Warming of 1.5oC. IPCC Special Report. World Meteorological Organisation, Geneva, Switzerland.
Mattio L, Zubia M, Loveday B, Crochelet E, Duong N, Payri CE, Bhagooli R, Bolton JJ. 2013. Sargassum (Fucales, Phaeophyceae) in Mauritius and Réunion, western Indian Ocean: Taxonomic revision and biogeography using hydrodynamic dispersal models. Phycologia 52 (6): 578-594. DOI: 10.2216/13-150.1.
Mccoy SJ, Kamenos NA. 2015. Coralline algae (Rhodophyta) in a changing world: Integrating ecological, physiological, and geochemical responses to global change. J Phycol 51: 6-24. DOI: 10.1111/jpy.12262.
Narrain D, Baulroop J, Bhagooli R, Bahorun T. (2023, in press). Differential photosynthetic, phytochemical and antioxidative responses of three macroalgae Ulva lactuca, Gracilaria salicornia and Turbinaria ornata exposed to thermal and irradiance conditions. Indo Pac J Ocean Life. DOI: 10.13057/oceanlife/o060201.
Nelson WA. 2009. Calcified macroalgae-critical to coastal ecosystem and vulnerable to change: A review. Mar Freshw Res 60: 787-801. DOI: 10.1071/MF08335.
O’leary JK, Potts DC, Braga JC, McClanahan TR. 2012. Indirect consequences of fishing: Reduction of coralline algae suppresses juvenile coral abundance. Cora Reefs 31: 547-59. DOI: 10.1007/s00338-012-0872-5.
Payri CE, Maritoren S, Bizeau C, Rodi M. 2001. Photoacclimatation in the tropical coralline algae Hydrolithon onkodes (Rhodophyta, Corallinaceae) from a French Polynesian reef. J Phycol 37: 223-234. DOI: 10.1046/j.1529-8817.2001.037002223.x.
Ramah S, Bhagooli R, Kaullysing D, Bergstad OA. 2021b. Rhodolith beds (Corallinaceae, Rhodophyta): An important marine ecosystem of the Saya de Malha and Nazareth Banks. West Indian Ocean J Mar Sci 2: 171-178. DOI: 10.4314/wiojms.si2021.2.12.
Ramah S, Etwarysing L, Auckloo N, Gopeechund A, Bhagooli R, Bahorun T. 2014. Prophylactic antioxidants and phenolics of seagrass and seaweed species: A seasonal variation study in a Southern Indian Ocean Island, Mauritius. Internet J Med Update (Ejournal) 9 (1): 27-37.
Ramah S, Gendron G, Bhagooli R, Soondur M, Souffre A, Melanie R, Coopen P, Caussy L, Bissessur D, Bergstad OA. 2021a. Diversity and distribution of the shallow water (23-50 m) benthic habitats on the Saya de Malha Bank, Mascarene Plateau. West Indian Ocean J Mar Sci 2: 69-80. DOI: 10.4314/wiojms.si2021.2.5.
Richards ZT, O’Leary MJ. 2015. The coralline algal cascades of Tallon Island (Jadan) friging reef, NW Australia. Coral Reefs 34: 595. DOI: 10.1007/s00338-015-1262-6.
Richmond RH. 1997. Reproduction and recruitment in corals: Critical links in the persistence of reef. In: Birkeland (eds). Life and Death of Coral Reefs. Chapman & Hall, New York. DOI: 10.1007/978-1-4615-5995-5_8.
Sanford E, Sones JL, Garcia-Reyes M, Goddard JH, Largier JL. 2019. Widespread shifts in the coastal biota of northern California during the 2014-2016 marine heatwaves. Sci Rep 9 (1): 4216. DOI: 10. 1038/s41598-019-40784-3.
Schoenrock KM, Vad J, Muth A, Pearce DM, Rea BR, Schofield JE, Kamenos NA. 2018. Biodiversity of Kelp forests and coralline algae habitats in Southwestern Greenland. Diversity 10: 117. DOI: 10.3390/d10040117.
Seabra MJ, Cruz T, Fernandes JN, Silva T, Hawkins SJ. 2019. Recruitment of the limpet Pettella ulyssiponensis and its relationship with crustose coralline algae: Pattern of juvenile distribution and larval settlement. J Mar Biol Assoc UK 2019 : 1-10. DOI: 10.1017/S0025315419000869.
Somanah MJ, Abdoulraman N, Bhagooli R, Bahorun T, Aruoma OI. 2012. Assessment of phenol content and antioxidant activities of shallow-water macroalgae from Mauritius. Univ Mauritius Res J 18A: 28-53.
Steneck RS, Dethier MN. 1994. A functional group approach to the structure of algal-dominated communities. Oikos 69: 476-498. DOI: 10.2307/3545860.
Stenseth NC, Mysterud A, Ottersen G, Hurrell JW, Chan KS, Lima M. 2002. Ecological effects of climate fluctuations. Science 297 (5585): 1292-1296. DOI: 10.1126/science.1071281.
Webster NS, Soo R, Cobb R, Negri AP. 2011. Elevated seawater temperature causes a microbial shift on crustose coralline algae with implications for the recruitment of coral larvae. ISME J 5: 759-770. DOI: 10.1038/ismej.2010.152.
Williams EA, Craigie A, Yeates A, Degnan SM. 2008. Articulated coralline algae of the Genus Amphiroa are effective natural inducers of settlement in the tropical abalone Haliotis asinina. Biol Bull 215: 98-107. DOI: 10.2307/25470687.
Woelkerling WJ, Irvine LM, Harvey AS. 1993. Growth-form in non-geniculate coralline red algae (Corallinales, Rhodophyta). Austral Syst Bot 6: 277-293. DOI: 10.1071/SB9930277.