Relationship analysis of upland rice under shading condition based on RAPD

##plugins.themes.bootstrap3.article.main##

YULI SULISTYOWATI
ANGELITA PUJI LESTARI
ENUNG SRI MULYANINGSIH

Abstract

Sulistyowati Y, Lestari AP, Mulyaningsih ES. 2018. Relationship analysis of upland rice under shading condition based on
RAPD Pros Sem Nas Masy Biodiv Indon 4: 190-194. Upland rice is tolerant crops on dry land and can be planted as a crop stream to the
area under the stands. However, the shade area under the stands often affect the growth of rice in the fields. Efforts to develop upland
rice varieties tolerant shade is necessary. Molekuler markers can be used to analysis genetic variability, inform cultivar identity and
evolution study. RAPD (Randomly amplified polymorphic DNA) is one of the methods to analysis genetic variability. In a previous
study, screening level of 200 rice genotypes had been done in a controlled shade using paranet.19 genotypes with high yield and 11
genotypes with low yield under controlled shade were used in this study. The objective of this study was to assess the genetic variability
of 30 rice genotypes that planted under the shade area using molekuler marker analysis. Thirty rice genotypes were analized using 20
RAPD primer. Twelve out of 20 primer gave the polimorfic bands and then analyzed using the NTSYS 2.02 program. The results
showed a total of 72 RAPD loci, with an average of 6 fragmen per primer. The dendrogram for pooled data showed four clusters in
similarity coefficient 0.76. The number of genotypes of each cluster were 16, 9, 3 and 2 respectively (cluster 1,2,3,and 4). The
information of genetic variability is useful in the choice of parents for plant breeding and assess the variability of germplas.

##plugins.themes.bootstrap3.article.details##

References
Gajera HP, Bambharolia RP, Domadiya RK, Patel SV, Golakiya BA.
2014. Molecular characterization and genetic variability studies
associated with fruit quality of indigenous mango (Mangiferaindica
L.) cultivars. Plant Systematics and Evolution 300: 1011-1020.

Goraniya SN, Tusamda AR, Shirolkar G, Rao SN, Murthy SD, Pawar.
2013. Molecular analysis of Manilkara hexandra Roxb. and Averrhoa
carambola L.using RAPD markers helps to understand genetic
variations. Intl J of Pharm Pharmaceut Sci 5 (3): 626-628.

Handayani T, Sastrosumarjo S, Sopandie D, Suharsono S, Setiawan A.
2012. Analisis marka morfologi dan molekuler sifat ketahanan
kedelai terhadap intensitas cahaya rendah. Jurnal Sains dan Teknologi
Indonesia 8 (1).

Hapsoro D, Warganegara HA, Utomo SD, Sriyani N, Yusnita. 2015.
Genetic diversity among sugarcane (Saccharum officinarum L.)
genotypes as shown by randomly amplified polymorphic DNA
(RAPD). Agrivita 37 (3): 247-257.

Harsanti R. 2011 . Potensi hasil tanaman padi gogo yang berasosiasi
dengan bakteri fotosintetik Synechococcus sp pada lingkungan yang
terpapar berbagai tingkat penaungan. [Skripsi]. Universitas Jember,
Jember.

Hussain SS. 2006. Molecular breeding for abiotic stress tolerance. drought
perspective. Proc Pakistan Acad Sci 43 (3): 189-210.

Mulyaningsih ES, Indrayani S. 2014. Keragaman morfologi dan genetik
padi gogo lokal asal Banten. Jurnal Biologi Indonesia 10 (1) : 119 -
128.

Simarmata M, Rustikawati. 2015. Identifikasi genetik kultivar padi gogo
dengan menggunakan marka RAPD. Akta Agrosia 18 (2): 1-10.

Sirait J. 2008. Luas daun, kandungan klorofil dan laju pertumbuhan
rumput pada naungan dan pemupukan yang berbeda. Jurnal Ilmu
Ternak dan Veteriner 13 (2): 109-116