Ecology and microhabitat model of long-tongued fruit bat Macroglossus minimus (Chiroptera: Pteropididae) in karst ecosystem of Klapanunggal, Bogor, West Java, Indonesia

##plugins.themes.bootstrap3.article.main##

ANDRIO A. WIBOWO
ADI BASUKRIADI
ERWIN NURDIN
GREGORIOUS BENHARD

Abstract

Abstract. Wibowo AA, Basukriadi A, Nurdin E, Benhard G. 2022. Ecology and microhabitat model of long-tongued fruit bat Macroglossus minimus (Chiroptera: Pteropididae) in karst ecosystem of Klapanunggal, Bogor, West Java, Indonesia. Intl J Trop Drylands 6: 11-15. Karst ecosystem is an important habitat for Chiroptera, including the long-tongued fruit bat Macroglossus minimus (E.Geoffroy, 1810) that feeds on nectar. While Klapanunggal is a karst ecosystem located in Bogor, West Java, Indonesia, Klapanunggal has potential Chiroptera habitat. Here, this study aims to assess and model microhabitat covariates that contribute to the density of M. minimus in Klapanunggal. The sampling sites in Klapanunggal karst covered forest, plantation, and settlement sites. Measured microhabitat covariates, including tree covariates (canopy covers, Normalized Difference Vegetation Index/NDVI, diversity, height), air humidity, distance to a river, and distance to a cave. The microhabitat model was developed and measured using Akaike Information Criterion (AIC). The result shows a high density of M. minimus was observed in the plantation site (13.96 inds./100 m2, 95%CI: 4-23 inds./100 m2), followed by the forest (7.13 inds./100 m2, 95%CI: 1-14 inds./100 m2), and settlement sites (4.7 inds./100 m2, 95%CI: 1-10 inds./100 m2). Based on AIC values, the best model explaining the microhabitat covariates that have positive effects on the density of M. minimus were tree diversity and NDVI. While humidity and distance to river covariates have negative effects. Density of M. minimus was positively correlated with increase in tree diversity (AIC= 14.73, r= 0.93) and NDVI (AIC= 22.09, r= 0.18) values. The limiting factors of M. minimus populations were high air humidity (AIC= 2.85, r= 0.99) and increase in distance to river (AIC= 20.85, r= 0.46). To conclude, the conservation of M. minimus, particularly the karst ecosystem, should emphasize increasing tree diversity.

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
Bansa L, Qhairil R, Ummu D, Amirrah A. 2020. Survey on the small mammals in Kangkawat Research Station Imbak Canyon Conservation Areas. J Trop Biol Conserv 17: 149-163.
Clements R, Sodhi NS, Schilthuizen M. 2006. Limestone karsts of Southeast Asia: Imperiled arks of biodiversity. Bioscience 56: 733-742. DOI: 10.1641/0006-3568(2006)56[733:LKOSAI]2.0.CO;2.
Downs N, Racey P. 2006. The use by bats of habitat features in mixed farmland in Scotland. Acta Chiropterologica 8: 169-185. DOI: 10.3161/1733-5329(2006)8[169:TUBBOH]2.0.CO;2.
Furey N, MackieI, Racey P. 2010. Bat diversity in Vietnamese limestone karst areas and the implications of forest degradation. Biodivers Conserv 19: 1821-1838. DOI: 10.1007/s10531-010-9806-0.
Gunnell A, Yani M, Kitchener D. 1996. Proceedings of the First International Conference on Eastern Indonesian-Australian Vertebrate Fauna. Western Australian Museum, Perth, Australia.
Katunzi T, Soisook P, Webala P, Armstrong K. 2020. Bat activity and species richness in different land-use types in and around Chome Nature Forest Reserve, Tanzania. Afr J Ecol 59: 1-15. DOI: 10.1111/aje.12783.
Kawamuna Al, Suprayogi A, Wijaya AP. 2017. Analisis kesehatan hutan mangrove berdasarkan metode klasifikasi NDVI pada citra Sentinel-2 (Studi Kasus: Teluk Pangpang Kabupaten Banyuwangi. J Geodesi Universitas Diponegoro 6 (1): 277-284. [Indonesian]
Kelm D, Lenski J, Kelm V. 2014. Seasonal bat activity in relation to distance to hedgerows in an agricultural landscape in Central Europe and implications for wind energy development. Acta Chiropterologica 16 (1): 65-73. DOI: 10.3161/150811014X683273.
Kingston T. 2008. Research priorities for bat conservation in Southeast Asia: A consensus approach. Biodivers Conserv 19 (2): 471-484. DOI: 10.1007/s10531-008-9458-5.
Kunz TH, Hodgkison R, Weise CD. 2009. Methods of capturing and handling bats. In: Kunz TH, Parsons S (eds). Ecological and Behavioural Methods for the Study of Bats. Johns Hopkins University Press, Baltimore.
Maryanto I, Higashi.S. 2011. Comparison of zoogeography among rats, fruit bats and insectivorous bats on Indonesian Islands. Treubia 38: 33-52.
Mickeburgh SP, Hutson AM, Racey PA. 2002. A review of the global conservation status of bats. Oryx 36: 18-34. DOI: 10.1017/S0030605302000054.
Mubarok H, Satuti N, Arisuryanti T, Maryanto I. 2021b. Haematology profile of fruit bats Cynopterus spp. from Special Region Yogyakarta, Indonesia. Malay Appl Biol 50: 1-9. DOI: 10.55230/mabjournal.v50i1.17.
Mubarok H, Satuti N, Maryanto I, Arisuryanti T. 2021a. Karyotype variation in lesser short-nosed fruit bat Cynopterus brachyotis (Müller 1838) from Special Region Yogyakarta, Indonesia. Biodiversitas 22: 2560-2568. DOI: 10.13057/biodiv/d220514.
Nangoy M, Ransaleleh T, Lengkong H, Koneri R, Latinne A, Kyes RC. 2021. Diversity of fruit bats (Pteropodidae) and their ectoparasites in Batuputih Nature Tourism Park, Sulawesi, Indonesia. Biodiversitas 22: 3075-3082. DOI: 10.13057/biodiv/d220609.
Nowak R. 1991. Walker's Bats of the World. The Johns Hopkins University Press, Baltimore, Maryland.
Nurfitrianto H, Budijastuti W, Faizah U. 2013. Kekayaan jenis kelelawar (Chiroptera) di kawasan Gua Lawa Karst Dander Kabupaten Bojonegoro. LenteraBio: Berkala Ilmiah Biologi 2 (2): 143-148. [Indonesian]
Pambudi R, Falah A, Naldi A, Bahri NF. 2020. Satellite imagery detection of land destruction in Klapanunggal Karst landscape induced by limestone surface mining. E3S Web Conf 211: 1-10. DOI: 10.1051/e3sconf/202021104002.
Philiani I, Saputra L, Harvianto L, Muzaki AA. 2016. Pemetaan vegetasi hutan mangrove menggunakan metode Normalized Difference Vegetation Index (NDVI) Di Desa Arakan, Minahasa Selatan, Sulawesi Utara. Surya Octagon Interdisciplinary J Soc Technol 1 (2): 211-222.
Phillipps Q, Phillipps K. 2018. Phillipps’ Field Guide to the Mammals of Borneo and Their Ecology. (2nd ed.). John Beaufoy Publishing Ltd., Oxford.
Prasetyo PN, Noerfahmy S, Tata HL. 2010. Jenis-Jenis Kelelawar Khas Agroforest Sumatera: Teknik Survei & Identifikasi. World Agroforestry Centre. [Indonesian]
Putri W, Qayim I, Qadir A. 2017. Soil seed bank of two karst ecosystems in Bogor, Indonesia: Similarity with the aboveground vegetation and its restoration potential. J Trop Life Sci 7 (3): 224-236. DOI: 10.11594/jtls.07.03.07.
Russo D, Cistrone L, Jones G. 2012. Sensory ecology of water detection by bats: A field experiment. PLoS ONE 7 (10): e48144. DOI: 10.1371/journal.pone.0048144.
Senawi J, Mahyudin A, Daud US, Amat A. 2020. Bat diversity in Imbak Canyon Conservation Area: Note on their echolocation calls and ectoparasites. J Trop Biol Conserv 17: 217-232.
Sukojo BM, Arindi YN. 2019. Analisa perubahan kerapatan mangrove berdasarkan nilai Normalized Difference Vegetation Index menggunakan Citra Landsat 8 (Studi Kasus: Pesisir Utara Surabaya). Geoid J Geod Geom 14 (2): 1-5. DOI: 10.12962/j24423998.v14i2.3874. [Indonesian]
Sulistiyowati E, Setiadi, Haryono E. 2021. Karst and conservation research in Indonesia and its implication to education. J Phys: Conf Ser 1796: 012071. DOI: 10.1088/1742-6596/1796/1/012071.
Susilowati A, Elfiati D, Rachmat HH, Yulita KS, Hadi AN, Kusuma YS, Batu SAL. 2020. Vegetation structure and floristic composition of tree species in the habitat of Scaphium macropodum in Gunung Leuser National Park, Sumatra, Indonesia. Biodiversitas 21: 3025-3033. DOI: 10.13057/biodiv/d210720.
Suyanto A. 2001. Kelelawar di Indonesia. (Bats of Indonesia). Puslitbang Biologi-LIPI, Cibinong. [Indonesian]
Vermeulen JJ, Whitten AJ. 1999. Biodiversity and Cultural Property in the Management of Limestone Resources. The World Bank, Washington, DC. DOI: 10.1596/0-8213-4508-7.