Modeling suitable habitats of Edible-nest Swiftlet (Aerodramus fuciphagus) to support ecotourism in karst ecosystem of Karang Bolong, Kebumen, Indonesia

##plugins.themes.bootstrap3.article.main##

ANDRIO A. WIBOWO
FITRI U. NINGRUM

Abstract

Abstract. Wibowo AA, Ningrum FU. 2023. Modeling suitable habitats of Edible-nest Swiftlet (Aerodramus fuciphagus) to support ecotourism in karst ecosystem of Karang Bolong, Kebumen, Indonesia. Intl J Trop Drylands 7: 112-119. The karst ecosystem plays a vital role as a habitat for the Edible-nest Swiftlet (Aerodramus fuciphagus (Thunberg, 1812)) (synonym: Collocalia fuciphaga) due to the availability of caves for roosting sites. Additionally, factors such as vegetation cover and drought influence the presence of A. fuciphagus in karst ecosystems. Karang Bolong in Kebumen, Indonesia is identified as a karst ecosystem inhabited by A. fuciphagus. However, there is limited information regarding potential suitable habitats for this species. This study aimed to model the potential habitat for A. fuciphagus using Species Distribution Modeling, considering vegetation cover variables represented by NDVI and drought represented by NDMI. The habitat suitability was assessed using the AUC metric, with values ranging from 0.875 to 0.968, indicating a good model fit for depicting potential habitats for the species. In Karang Bolong, the suitability of habitats was constrained by drought conditions. The model suggests suitable habitats are concentrated in caves along the Kebumen Coasts. This information is valuable for identifying areas suitable for ecotourism and providing an alternative to swiftlet nest cultivation/harvesting. Regarding ecotourism activities, birding and observing Edible-nest Swiftlets in their natural coastal habitats, featuring scenic coastal views, could be attractive options to support the tourism industry within the karst ecosystems of Karang Bolong and Kebumen.

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
Afifah FN, Putri NRA, Hartanti AN, Pramudita DA, Armando MF, Rahmayani D, Indrawan M, Safira RN, Buot Jr IE, Setyawan AD. 2023. Fern diversity and conservation status in the South Gombong karst forest, Kebumen District, Indonesia. Pros Sem Nasl Masy Biodiv Indones 9: 186-195. DOI: 10.13057/psnmbi/m090128.
Ahmad H, Ong SQ, Tan EH. 2019. The diet for Edible-Nest Swiftlets: nutritional composition and cost of life stages of Megaselia scalaris Loew (Diptera: Phoridae) bred on 3 commercial breeding materials. Intl J Insect Sci 9: 11. DOI: 10.1177/1179543318823533.
Allouche O, Tsoar A, Kadmon R. 2006. Assessing the accuracy of species distribution models: Prevalence, kappa and the true Skill Statistic (TSS). J Appl Ecol 43 (6): 1223-1232. DOI: 10.1111/j.1365-2664.2006.01214.x.
Ambrosini R, Orioli V, OrioliDario Massimino D, Bani L. 2011. Identification of putative wintering areas and ecological determinants of population dynamics of Common House-Martin (Delichon urbicum) and Common Swift (Apus apus) breeding in Northern Italy. Avian Conserv Ecol 6 (1): 3. DOI: 10.5751/ACE-00439-060103.
Amin N. 2021. Biological Studies and Breeding Potential of Edible-nest Swiflet (Collocalia fuciphaga). [Dissertation]. Universitas Hasanuddin, Makassar. [Indonesian]
Ayuti T. 2016. Identifikasi habitat dan produksi sarang burung walet (Collocalia fuciphaga) di Kabupaten Lampung Timur. Stud J 5 (4). [Indonesian]
Benjakul S, Chantakun K. 2022. Sustainability challenges in edible bird's nest: Full exploitation and health benefit. In: Bhat R (eds). Future Foods: Global Trends, Opportunities, and Sustainability Challenges. Academic Press, London. DOI: 10.1016/B978-0-323-91001-9.00029-3.
Biancalana RN. 2014. Breeding biology of the White-collared Swift Streptoprocne zonaris in southeastern Brazil. Rev Bras Ortop 22: 341-346. DOI: 10.1007/BF03544271.
Bivand RR. 2022. Packages for analyzing spatial data: A comparative case study with areal data. Geogr Anal 54 (3): 488-518. DOI: 10.1111/gean.12319.
Briggs KB, Deeming DC. 2021. Localized habitat affects size and materials used in the construction of Common Redstart Phoenicurus phoenicurus nests. Bird Study 68 (1): 9-20. DOI: 10.1080/00063657.2021.1958197.
Burhanuddin M, Hafidzi HM. 2017. Ranging behaviour of edible nest swiftlet (Aerodramus sp.) in Kuala Langat District, Selangor, Malaysia. Malay Appl Biol 46 (2): 59-66.
Clements R, Sodhi NS, Schilthuizen M. 2006. Limestone karsts of Southeast Asia: Imperiled arks of biodiversity. Bioscience 56: 733-742. DOI: 10.1641/0006-3568(2006)56[733:LKOSAI]2.0.CO;2.
Daud M, Hikmah. 2021. Karakteristik dan produksi walet sarang putih (Collocalia fuciphaga) dari hasil budidaya walet di Desa Binanga Karaeng, Kecamatan Lembang, Kabupaten Pinrang. Prosiding Seminar Konservasi untuk Kesejahteraan Masyarakat II 1 (1): 1-9. [Indonesian]
De K, Ali SZ, Dasgpta N, Uniyal VP, Johnson JA. Hussain SA. 2020. Evaluating performance of four species distribution models using Blue-tailed Green Darner Anax guttatus (Insecta: Odonata) as model organism from the Gangetic riparian zone. J Threat Taxa 12 (14): 16962-16970. DOI: 10.11609/jott.6106.12.14.16962-16970.
Frank SD. 2021. Review of the direct and indirect effects of warming and drought on scale insect pests of forest systems. Intl J For Res 94 (2): 167-180. DOI: 10.1093/forestry/cpaa033.
Fullard JH, Barclay RMR, Thomas DW. 2010. Observations on the behavioural ecology of the Atiu Swiftlet Aerodramus sawtelli. Bird Conserv Intl 20 (4): 385-391. DOI: 10.1017/S095927091000016X.
Furey N, MackieI, Racey P. 2010. Bat diversity in Vietnamese limestone karst areas and the implications of forest degradation. Biodivers Conserv 19: 1821-1838. DOI: 10.1007/s10531-010-9806-0.
Gao B. 1996. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ 58 (1): 257-266. DOI: 10.1016/S0034-4257(96)00067-3.
Ito Y, Matsumoto K, Usup A, Yamamoto Y. 2021. A sustainable way of agricultural livelihood: Edible bird's nests in Indonesia. Ecosyst Health Sust 7 (1): 1960200. DOI: 10.1080/20964129.2021.1960200.
Kawamuna A, Suprayogi A, Wijaya AP. 2017. Analisis kesehatan hutan mangrove berdasarkan metode klasifikasi NDVI pada citra Sentinel-2 (Studi Kasus: Teluk Pangpang Kabupaten Banyuwangi. Jurnal Geodesi Undip 6 (1): 277-284. DOI: 10.14710/jgundip.2017.15439. [Indonesian]
Khan AM, Li Q, Saqib Z, Khan N, Habib T, Khalid N, Majeed M, Tariq A. 2022. MaxEnt modelling and impact of climate change on habitat suitability variations of economically important Chilgoza Pine (Pinus gerardiana Wall.) in South Asia. Forests 13: 715. DOI: 10.3390/f13050715.
Kholid N. 2020. Kajian Geografis Daya Tarik Wisata Alam Gua dan Strategi Pengembangan Objek Wisata di Kecamatan Ayah Kabupaten Kebumen. [Undergraduate Thesis]. Universitas Negeri Semarang, Semarang. [Indonesian]
Kingston T. 2008. Research priorities for bat conservation in Southeast Asia: A consensus approach. Biodivers Conserv 19 (2): 471-484. DOI: 10.1007/s10531-008-9458-5.
Lemenkova P. 2020. Using R packages 'Tmap', 'Raster' And 'Ggmap' for cartographic visualization: An example of DEM-based terrain modelling of Italy, Apennine Peninsula. Zb Rad -Geogr Fak Univ Beogr 68: 99-116. DOI: 10.5937/zrgfub2068099L.
Luo L, Wu Y, Li H, Xing D, Zhou Y, Xia A. 2022. Drought induced dynamic traits of soil water and inorganic carbon in different karst habitats. Water 14 (23): 3837. DOI: 10.3390/w14233837.
MacKinnon JR, Phillipps K. 1993. A Field Guide to the Birds of Borneo, Sumatra, Java, and Bali, the Greater Sunda Islands. Oxford University Press, Oxford. DOI: 10.1093/oso/9780198540359.001.0001.
Mane AM, Manchi SS. 2017. Roosting patterns of the Edible-nest Swiftlet (Aerodramus fuciphagus) of the Andaman Islands: effects of lunar phase and breeding chronology. Emu - Austral Ornithol 117 (4): 325-332. DOI: 10.1080/01584197.2017.1336065.
Mao M, Chen S, Ke Z, Qian Z, Xu Y. 2022. Using MaxEnt to predict the potential distribution of the little fire ant (Wasmannia auropunctata) in China. Insects 13: 1008. DOI:10.3390/insects13111008.
Marcot BG. 2012. Metrics for evaluating performance and uncertainty of Bayesian network models. Ecol Model 230: 50-62. DOI: 10.1016/j.ecolmodel.2012.01.013.
Margareta R, Abdullah. 2010. Pemodelan spasial habitat burung walet sarang putih (Collocalia fuciphaga) dengan menggunakan SIG (Sistem Informasi Geografis) dalam upaya pengembangan budidaya sarang walet di Jawa Tengah (studi kasus Kabupaten Grobogan dan Kabupaten Semarang). Sainteknol 8 (2): 73-86. DOI: 10.15294/sainteknol.v8i2.325. [Indonesian]
Merow C, Smith MJ, Silander Jr JA. 2013. A practical guide to MaxEnt for modeling species' distributions: What it does, and why inputs and settings matter. Ecography 36 (10): 1058-1069. DOI: 10.1111/j.1600-0587.2013.07872.x.
Mo C, Tang P, Huang K, Lei X, Lai S, Deng J, Bao M, Sun G, Xing Z. 2023. Evolution of drought trends under climate change scenarios in karst basin. Water 15 (10): 1934. DOI: 10.3390/w15101934.
Muntofingah S. 2017. Perdagangan Sarang Burung Walet di Kabupaten Kebumen Tahun 1990-2012. [Undergraduate Thesis]. Universitas Diponegoro, Semarang. [Indonesian]
Mursidah, Lahjie AM, Masjaya, Rayadin Y, Ruslim Y, Judinnur MB, Andy. 2021. The dietary, productivity, and economic value of swiftlet (Aerodramus fuciphagus) farming in East Kalimantan, Indonesia. Biodiversitas 22: 2528-2537. DOI: 10.13057/biodiv/d220663.
Petkliang N, Gale GA, Brunton DH, Bumrungsri S. 2017. Wetland, forest, and open paddy land are the key foraging habitats for Germain's Swiftlet (Aerodramus inexpectatus germani) in Southern Thailand. Trop Conserv Sci 10: 1-12. DOI: 10.1177/1940082917698467.
Philiani I, Saputra L, Harvianto L, Muzaki AA. 2016. Pemetaan vegetasi hutan mangrove menggunakan metode Normalized Difference Vegetation Index (NDVI) di Desa Arakan, Minahasa Selatan, Sulawesi Utara. Surya Octagon 1 (2): 211-222. DOI: 10.31219/osf.io/c8k6j. [Indonesian]
Reddy MT, Begum H, Sunil N, Pandravada SR, Sivaraj N. 2015. Assessing climate suitability for sustainable vegetable roselle (Hibiscus sabdariffa var. sabdariffa L.) cultivation in India using Maxent. Agric Biol Sci J 1 (2): 62-70.
Ruete A, Leynaud GC. 2015. Goal-oriented evaluation of species distribution models' accuracy and precision: True Skill Statistic profile and uncertainty maps. PeerJ Prepr 3: e1208v1. DOI: 10.7287/peerj.preprints.1208v1.
Sankaran R. 2001. The status and conservation of the Edible-nest Swiftlet (Collocalia fuciphaga) in the Andaman and Nicobar Islands. Biol Conserv 97 (3): 283-294. DOI: 10.1016/S0006-3207(00)00124-5.
Shcheglovitova M, Anderson RP. 2013. Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes. Ecol Model 269: 9-17. DOI: 10.1016/j.ecolmodel.2013.08.011.
Song D, Li Z, Wang T, Qi Y, Han H, Chen Z. 2023. Prediction of changes to the suitable distribution area of Fritillaria przewalskii Maxim. in the Qinghai-Tibet plateau under Shared Socioeconomic Pathways (SSPS). Sustainability 15: 2833. DOI: 10.3390/su15032833.
Sukojo BM, Arindi YN. 2019. Analisa perubahan kerapatan mangrove berdasarkan nilai Normalized Difference Vegetation Index menggunakan Citra Landsat 8 (studi kasus: Pesisir Utara Surabaya). Geoid J Geod Geomat 14 (2): 1-5. DOI: 10.12962/j24423998.v14i2.3874. [Indonesian]
Sulistiyowati E, Setiadi, Haryono E. 2021. Karst and conservation research in Indonesia and its implication to education. J Phys Conf Ser 1796: 012071. DOI: 10.1088/1742-6596/1796/1/012071.
Suriya R, Zunita Z, Rosnina Y, Fadzillah A, Hassan L. 2004. Preliminary in-vitro study on antibacterial activity of swiftlet bird's nests. 11th Intl Conf Assoc Inst Trop Vet Med 16th Vet Assoc Malay Congr 1 (1): 334-335.
Tesfamariam BG, Gessesse B, Melgani F. 2022. MaxEnt-based modeling of suitable habitat for rehabilitation of Podocarpus forest at landscape-scale. Environ Syst Res 11: 4. DOI 10.1186/s40068-022-00248-6.
Vilà M, Gassó N, Thuiller W, Pino J. 2012. Potential distribution range of invasive plant species in Spain. Neobiota 12: 25-40. DOI: 10.3897/neobiota.12.2341.
Zhao WL, Chen HG, Lin L, Cui ZJ, Jin L. 2018. Distribution of habitat suitability for different sources of Fritillariae cirrhosae bulbus. Chin J Ecol 37: 1037-1042. DOI: 10.13292/j.1000-4890.201804.035.