Forage yields and quality of Cenchrus ciliaris and Panicum maximum ecotypes under varied harvest intervals in a semi-arid environment in Kenya

##plugins.themes.bootstrap3.article.main##

BOSCO K. KISAMBO
OLIVER V. WASONGA
https://orcid.org/0000-0002-5929-6091
OSCAR K. KIPCHIRCHIR
https://orcid.org/0000-0002-8245-5185
GEORGE N. KARUKU
https://orcid.org/0000-0002-4086-6234
EVERLYNE C. KIRWA

Abstract

Abstract. Kisambo BK, Wasonga OV, Kipchirchir OK, Karuku GN, Kirwa EC. 2023. Forage yields and quality of Cenchrus ciliaris and Panicum maximum ecotypes under varied harvest intervals in a semi-arid environment in Kenya. Intl J Trop Drylands 7: 102-111. Livestock production in Kenya typically relies on native pastures for nutrition and efforts are ongoing to develop varieties adapted to semi-arid conditions. A field experiment was conducted in a semi-arid environment to evaluate harvest intervals’ influence on the yield and nutritional attributes of selected grass ecotypes of two native grasses used in reseeding and fodder production. The grasses included buffel grass Cenchrus ciliaris Kilifi (KLF), C. ciliaris Magadi (MGD), Guinea grass Panicum maximum Isinya (ISY) and P. maximum Taveta (TVT). They were planted in a randomized-complete block design in a split-plot arrangement and maintained under rain-fed conditions. Forage harvests were performed at 3 harvest intervals i.e., 14, 28 and 84 days, simulating different utilization regimes in semi-arid Kenya. Biomass yield, forage accumulation and quality of the grasses were determined. The highest yields were obtained at 28-day harvest intervals and were 74% higher than the 14-day interval, although almost similar to the 84-day interval harvests. Forage accumulation rates varied significantly (p <0.005) between ecotypes and harvesting intervals. Crude Protein (CP) declined significantly with maturity, from a mean of 11.67% for the 14-day harvesting interval to 5.22% at the end of the season and varied among treatments. In Vitro Dry Matter Digestibility (IVDMD) increased with increasing harvest interval. However, fiber components-Nutrient Detergent Fiber (NDF), Acid Detergent Fiber (ADF) and Acid Detergent Lignin (ADL) increased with plant age. Harvest intervals had a significant (p <0.05) influence on the yield and qualitative attributes of the grass ecotypes. C. ciliaris ecotype MGD and P. maximum ecotype TVT are viable options for further performance evaluation in semi-arid environments as efforts to develop new range fodder varieties are accelerated.

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
AOAC. 2010. Official Methods of Analysis of the Association of Analytical Chemists,18th edition. AOAC International, Washington DC.
Balehegn M, Nkosi BD, Ayantunde A et al. 2022. Forage conservation in sub-Saharan Africa: Review of experiences, challenges, and opportunities. Agron J 114 (1): 75-99. DOI: 10.1002/agj2.20954.
Ball DM, Collins M, Lacefield GD, Martin NP, Mertens DA, Olson KE, Putnam DH, Undersander DJ, Wolf MW. 2001. Understanding Forage Quality. American Farm Bureau Federation Publication 1-01, Park Ridge, IL.
Boone RB, Conant RT, Sircely J, Thornton PK, Herrero M. 2018. Climate change impacts on selected global rangeland ecosystem services. Glob Chang Biol 24 (3): 1382-1393. DOI: 10.1111/gcb.13995.
Boonman JG. 1993. East Africa’s Grasses and Fodders: Their Ecology and Husbandry. Kluwer Academic Publishers, London. DOI: 10.1007/978-94-015-8224-7.
Capstaff NM, Miller AJ. 2018. Improving the yield and nutritional quality of forage crops. Front Plant Sci 9: 535. DOI: 10.3389/fpls.2018.00535.
CIMMYT. 2013. Kiboko Crops Research Station: A brief and Visitors’ Guide. CIMMYT, Nairobi, Kenya.
de Almeida Souza RT, Dos Santos MVF, da Cunha MV, Gonçalves GD, da Silva VJ, de Mello ACL, Muir JP, Ribeiro REP, Dubeux Jr JCB. 2021. Dwarf and tall elephant grass genotypes under irrigation as forage sources for ruminants: Herbage accumulation and nutritive value. Animal 11 (8): 2392. DOI: 10.3390/ani11082392.
Erickson PS, Kalscheur KF. 2020. Nutrition and feeding of dairy cattle. In: Fuller W, Bazer G, Lamb C, Wu G (eds). Animal Agriculture. Academic Press, London. DOI: 10.1016/B978-0-12-817052-6.00009-4.
Getachew G, Laca EA, Putnam DH, Witte D, McCaslin M, Ortega KP, De Peters EJ. 2018. The impact of lignin downregulation on alfalfa yield, chemical composition, and in vitro gas production. J Sci Food Agric 98 (11): 4205-4215. DOI: 10.1002/jsfa.8942.
Gilo BN, Tebeje BE, Liban JD, Tolossa AR. 2022. Changes in herbaceous vegetation attributes and nutritional quality as influenced by cutting frequencies in the enclosure of Borana rangelands, southern Ethiopia. Ecol Indic 145: 109672. DOI: 10.1016/j.ecolind.2022.109672.
Godde CM, Boone RB, Ash AJ, Waha K, Sloat LL, Thornton PK, Herrero M. 2020. Global rangeland production systems and livelihoods at threat under climate change and variability. Environ Res Lett 15 (4): 044021. DOI: 10.1088/1748-9326/ab7395.
Greiner C, Peter H, Michael V. 2021. Land-use and land?cover changes in pastoral drylands: long-term dynamics, economic change, and shifting socioecological frontiers in Baringo, Kenya. Hum Ecol 49: 565-577. DOI: 10.1007/s10745-021-00263-8.
Herrero M, Havlik P, Valin H, Notenbaert A, Rufino MC, Thornton PK, Blummel M, Weiss F, Grace D, Obersteiner M. 2013. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. PNAS 110 (52): 20888-20893. DOI: 10.1073/pnas.1308149110.
Keba HT, Madakadze IC, Angassa A, Hassen A. 2013. Nutritive value of grasses in semi-arid rangelands of Ethiopia: Local experience based herbage preference evaluation versus laboratory analysis. Asian-Australas J Anim Sci 26 (3): 366-377. DOI: 10.5713/ajas.2012.12551.
Kirwa EC. 2019. Evaluation of Grass Ecotypes for Potential Use in Reseeding Pastoral Fields in the Arid and Semi-Arid Lands of Kenya. [Ph. D. Thesis]. University of Nairobi, Nairobi, Kenya.
Kisaka MO, Mucheru-Muna M, Ngetich FK, Mugwe JN, Mugendi D, Mairura F. 2015. Rainfall variability, drought characterization, and efficacy of rainfall data reconstruction: Case of eastern Kenya. Adv Meteorol 2015: 380404. DOI: 10.1155/2015/380404.
Kitaba A, Tamir B. 2007. Effect of harvesting stage and nutrient levels on nutritive values of natural pasture in central highlands of Ethiopia. Agric Trop Subtrop 40 (1): 7-13.
Koech OK. 2014. Comparative Evaluation of Six Indigenous Rangeland Grasses for Pasture Production under Varying Soil Moisture Contents in Tana River County, South Eastern Kenya. [Ph. D. Thesis]. University of Nairobi, Nairobi, Kenya.
Lee MA. 2018. A global comparison of the nutritive values of forage plants grown in contrasting environments. J Plant Res 131 (4): 641-654. DOI: 10.1007/s10265-018-1024-y.
Leng RA. 1990. Factors affecting the utilization of ‘poor-quality’ forages by ruminants particularly under tropical conditions. Nutr Res Rev 3 (1): 277-303. DOI: 10.1079/NRR19900016.
Lounglawan P, Lounglawan W, Suksombat W. 2014. Effect of cutting interval and cutting height on yield and chemical composition of King Napier Grass (Pennisetum purpureum x Pennisetum americanum). APCBEE Procedia 8: 27-31. DOI: 10.1016/j.apcbee.2014.01.075.
Mahyuddin P. 2008. Relationship between chemical component and in vitro digestibility of tropical grasses. Hayati J Biosci 15 (2): 85-89. DOI: 10.4308/hjb.15.2.85.
Mganga KZ, Musimba NKR, Nyariki DM, Nyangito MM. 2015. The choice of grass species to combat desertification in semi-arid Kenyan rangelands is greatly influenced by their forage value for livestock. Grass Forage Sci 70 (1): 161-167. DOI: 10.1111/gfs.12089.
Mganga KZ, Ndathi AJN, Wambua SM, Bosma L, Kaindi EM, Kioko T, Kadenyi N, Musyoki GK, Van Steenbergen F, Musimba NKR. 2021. Forage value of vegetative leaf and stem biomass fractions of selected grasses indigenous to African rangelands. Anim Prod Sci 61 (14): 1476-1483. DOI: 10.1071/AN19597.
Mganga KZ, Nyariki DM, Musimba NKR, Mwang’ombe AW. 2019. Indigenous grasses for rehabilitating degraded African drylands. In Bamutaze Y, Kyamanywa S, Singh B, Nabanoga G, Lal R (eds). Agriculture and Ecosystem Resilience in Sub-Saharan Africa. Climate Change Management. Springer, Cham. DOI: 10.1007/978-3-030-12974-3_3.
Michalk DL, Kemp DR, Badgery WB. 2018. Sustainability and future food security - A global perspective for livestock production. Land Degrad Dev 30 (5): 561-573. DOI: 10.1002/ldr.3217.
Msiza NH, Ravhuhali KE, Mokoboki HK, Mavengahama S, Motsei LE. 2021. Ranking species for veld restoration in semi-arid regions using agronomic, morphological and chemical parameters of selected grass species at different developmental stages under controlled environment. Agronomy 11: 52. DOI: 10.3390/agronomy11010052.
Mwendia SW, Ohmstedt U, Nyakundi F, Notenbaert A, Peters M 2022. Does harvesting Urochloa and Megathyrsus forages at short intervals confer an advantage on cumulative dry matter yields and quality? J Sci Food Agric 102 (2): 750-756. DOI: 10.1002/jsfa.11407.
Ndathi AJN. 2012. Climate Variability and Livestock Feeding Strategies in the Agro-pastoral Systems of Southeastern Kenya. [Ph.D. Thesis]. University of Nairobi, Nairobi, Kenya.
Njarui DMG, Gatheru M, Mwangi DM, Keya GA. 2015. Persistence and productivity of selected Guinea grass ecotypes in semi-arid tropical Kenya. Grassl Sci 61 (3): 142-152. DOI: 10.1111/grs.12092.
Omollo E. 2017. Analysis of Fodder Production and Marketing in the Rangelands of Southern Kenya. [M.Sc Thesis]. University of Nairobi, Nairobi, Kenya.
Ruolo MS, Pérez HE, Rodriguez AM. 2019. Chloris gayana Kunth under different defoliation regimes. Morphogenesis, sward structure and leaf area index. Grass Forage Sci 74 (4): 720-727. DOI: 10.1111/gfs.12451.
Schnellmann LP, Verdoljak JJO, Bernardis A, Martínez-González JC, Castillo-Rodríguez SP, Limas-Martínez AG. 2020. Cutting frequency and height on the quality of Megathyrsus maximus (cv. Gatton panic). Ciencia Tecnologia Agropecuaria 21 (3): 1-11. DOI: 10.21930/RCTA.VOL21_NUM3_ART:1402.
Tilley JMA, Terry RA. 1963. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci 18 (2): 104-111. DOI: 10.1111/j.1365-2494.1963.tb00335.x.
Van Soest JP, Robertson B, Lewis BA. 1991. Methods for dietary fibre, neutral detergent fibre, and non-starch polysaccharides in relation to animal nutrition. J Dairy Sci 74 (10): 3583-3597. DOI: 10.3168/jds.S0022-0302(91)78551-2.
Venter ZS, Heidi-Jayne H, Cramer MD. 2021. Does defoliation frequency and severity influence plant productivity? The role of grazing management and soil nutrients. Afr J Range Forage Sci 38 (2): 141-156. DOI: 10.2989/10220119.2020.1766565.
Wainwright CW, Finney DN, Kilavi M, Black E, Marshan JH. 2021. Extreme rainfall in East Africa, October 2019 - January 2020 and context under future climate change. Weather 76 (1): 26-31. DOI: 10.1002/wea.3824.
Wasonga OV, Ngoyawu WM, Elhadi YAM. 2017. Fodder production for enhanced pastoral and agro-pastoral resilience in the drylands of Southern Kenya. Afr High Educ Week RUFORUM Fifth Biennial Conf 2016 14 (2): 819-825.
Wassie WA, Tsegay BA, Wolde AT, Limeneh BA. 2018. Evaluation of morphological characteristics, yield and nutritive value of Brachiaria grass ecotypes in northwestern Ethiopia. Agric Food Secur 7: 89. DOI: 10.1186/s40066-018-0239-4.
Yang J, Udvardi M. 2018. Senescence and nitrogen use efficiency in perennial grasses for forage and biofuel production. J Exp Bot 69 (4): 855-865. DOI: 10.1093/jxb/erx241.