Pioneer plants of calcareous land in its early succession and the existence of Arbuscular Mycorrhizal Fungi

##plugins.themes.bootstrap3.article.main##

SUHARNO
SUPENI SUFAATI
DEWI WULANDARI
MUHAMMAD BONDAN ALFARABBI
SHERLITA MAULANI
ANNISA ALFAADHILAH RUHANI

Abstract

Abstract. Suharno, Sufaati S, Wulandari D, Alfarabbi MB, Maulani S, Ruhani AA. 2023. Pioneer plants of calcareous land in its early succession and the existence of Arbuscular Mycorrhizal Fungi. Biodiversitas 24: 6209-6217. Calcareous land is characterized with the high presence of calcium carbonate and classified as marginal land because it does not have the quality to support plant growth. The soil quality in calcareous land is poor physically, chemically, and biologically. Nonetheless, certain plants and Arbuscular Mycorrhizal Fungi (AMF) thrive in this area. This research aims to determine plant diversity and the existence of AMF on calcareous land in Jayapura City, Papua, Indonesia. Data were collected through field observations in former limestone mining areas for a year. The results show that 41 types of plants were found at the study site. Based on the important value index, the most important plants were Bidens pilosa, Borreria sp., Piper aduncum, Pteris vittata, Polystichum sp., Axonopus compressus, Muntingia calabura, Pteris cretica, Cynodon sp., and Eleusine indica. Family with the largest number of species were Poaceae followed by Fabaceae, Pteridaceae, Moraceae, and Asteraceae. Based on plant habitus, 14.64% were ferns, 34.15% grasses, 39.62% herbaceous plants, and 12.20% trees. Plants sampled for the presence of AMF included B. pilosa, M. calabura, and P. aduncum. These plant species had level of AMF colonization of 71.2, 71.4, and 63.3%, respectively. There were 13 morphospecies of AMF belonging to the genera Glomus (46.15%), Claroideoglomus (7.69%), Acaulospora (38.46%), and Scutellospora (7.69%). The mutually beneficial symbiotic relationship between plants and AMF can be capitalized for managing the revegetation of former mining land with calcareous soil.

##plugins.themes.bootstrap3.article.details##

References
Akhalkatsi M, Arabuli G, Togonidze N. 2018. Plant species composition and diversity on the calcareous soils in around of the limestone quarry in Georgia, Caucasus region. MOJ Food Process Technol 6 (3): 251?256. DOI: 10.15406/mojfpt.2018.06.00172
Alrajhei K, Saleh I, Abu-Dieyeh MH. 2022. Biodiversity of arbuscular mycorrhizal fungi in plant roots and rhizosphere soil from different arid land environment of Qatar. Plant Direct 6 (1): e369. DOI: 10.1002/pld3.369.
Bartolome AP, Villaseñor IM, Yang W.-C. 2013. Bidens pilosa L. (Asteraceae): Botanical properties, traditional uses, phytochemistry, and pharmacology. Evidence-based complementary and alternative medicine. 51: 340215. DOI: 10.1155/2013/340215.
Beslemes D, Tigka E, Roussis I, Kakabouki I, Mavroeidis A, Vlachostergios D. 2023. Effect of arbuscular mycorrhizal fungi on nitrogen and phosphorus uptake efficiency and crop productivity of two-rowed barley under different crop production systems. Plants 12: 1908. DOI: 10.3390/plants12091908.
Campo S., Martín-Cardoso H, Olivé M, Pla E, Catala-Forner M, Martínez-Eixarch M, Segundo BS. 2020. Effect of root colonization by arbuscular mycorrhizal fungi on growth, productivity and blast resistance in rice. Rice 13: 42. DOI: 10.1186/s12284-020-00402-7
Chanclud E, Morel JB. 2016. Plant hormones: A fungal point of view. Mol. Plant Pathol 17: 1289–1297. DOI: 10.1111/mpp.12393.
de Oliveira JSF, Xavier LP, Lins A, Andrade EHA, Maia JGS, de Mello AH, Setzer WN, Ramos AR, da Silva JKR. 2019. Efects of inoculation by arbuscular mycorrhizal fungi on the composition of the essential oil, plant growth, and lipoxygenase activity of Piper aduncum L. AMB Expr. 9: 29. DOI: 10.1186/s13568-019-0756-y.
Diagne N, Ngom M, Djighaly PI, Fall D, Hocher V, Svistoonoff S. 2020. Roles of arbuscular mycorrhizal fungi on plant growth and performance: Importance in biotic and abiotic stressed regulation. Diversity 12: 370. DOI: 10.3390/d12100370.
Hodge A, Fitter AH. 2013. Mechanisms of plant competition: Microbial mediation of plant competition and community structure. Funct Ecol 27: 865–875. DOI: 10.1111/1365-2435.12002.
Husna, Tuheteru FD, Arif A. 2021. Arbuscular mycorrhizal fungi to enhance the growth of tropical endangered species Pterocarpus indicus and Pericopsis mooniana in post gold mine field in Southeast Sulawesi, Indonesia. Biodiversitas 22: 3844–3853. DOI: 10.13057/biodiv/d220930.
INVAM. 2022. International culture collection of (vesicular) arbuscular mycorrhizal Fungi. URL: https://invam.ku.edu/.
Ishaq L, Tae ASJA, Airthur MA, Bako PO. 2021. Effect of single and mixed inoculation of arbuscular mycorrhizal fungi and phosphorus fertilizer application on corn growth in calcareous soil. Biodiversitas 22 (4): 1920-1926. DOI: 10.13057/biodiv/d220439.
Kumalawati Z, Muliani S, Asmawati, Kafrawi, Musa M. 2021. Exploration of arbuscular mycorrhizal fungi from sugarcane rhizosphere in marginal land. Plant Tropik: J Agro Sci 9 (2): 126-135.
Liu W, Zhang Y, Jiang S, Deng Y, Christie P, Murray PJ, Li X, Zhang J. 2016. Arbuscular mycorrhizal fungi in soil and roots respond differently to phosphorus inputs in an intensively managed calcareous agricultural soil. Sci Rep 6: 24902. DOI: 10.1038/srep24902.
Ma X, Xu X, Geng Q, Luo Y, Ju C, Li Q, Zhou Y. 2023. Global arbuscular mycorrhizal fungal diversity and abundance decreases with soil available phosphorus. Global Ecol Biogeogr 32: 1423–1434. DOI: 10.1111/geb.13704.
McPherson JI. 2013. Conservation assessment of calcareous ecosystems in Pennsylvania. Pennsylvania Natural Heritage Program at Western Pennsylvania Conservancy. Pittsburgh, PA. Report to Wild Resources Conservation Program. Harrisburg, PA.
Meshram PB, Meshram NA, Kausadikar HK. 2022. Calcareous soil and their management– A Review. Just Agric 3(4): 1–6.
Mueller-Dombois D, Ellenberg H. 1974. Aims and methods of vegetation ecology. John Willey & Sons, Inc. New York.
Navarro-Ramos SE, Sparacino J, Rodríguez JM, Filippini E, Marsal-Castillo BE, García-Cannata L, Renison D, Torres RC. 2022. Active revegetation after mining: What is the contribution of peer-reviewed studies?. Heliyon 8: e09179. DOI: 10.1016/j.heliyon.2022.e09179
O’Callaghan M, Ballard RA, Wright D. 2022. Soil microbial inoculants for sustainable agriculture: Limitations and opportunities. Soil Use Manag 38: 1340–1369. DOI: 10.1111/sum.12811.
Parihar M, Rakshit A, Singh HB, Rana K. 2019. Diversity of arbuscular mycorrhizal fungi in alkaline soils of hot sub humid eco-region of Middle Gangetic Plains of India. Acta Agric Scand B — Soil Plant Sci 69 (5): 386–397. DOI: 10.1080/09064710.2019.1582692.
Piqueray J, Bisteau E, Bottin G, Mahy G. 2007. Plant communities and species richness of the calcareous grasslands in Southeast Belgium. Belg. J. Bot 140 (2): 157–173. DOI: 10.2307/20794637.
Prayudyaningsih R, Sari R. 2016. The application of arbuscular mycorrhizal fungi (AMF) and compost to improve the growth of teak seedlings (Tectona grandis Linn.f.) on limestone post-mining soil. J Penel Kehut Wallacea 5 (1): 37-46.
Püschel D, Bitterlich M, Rydlová J, Jansa J. 2020. Facilitation of plant water uptake by an arbuscular mycorrhizal fungus: A Gordian knot of roots and hyphae. Mycorrhiza 30: 299–313. DOI: 10.1007/s00572-020-00949-9.
Quoreshi AM, Suleiman MK, Manuvel AJ, Sivadasan MT, Jacob S, Thomas R. 2019. Biofertilizers for agriculture and reclamation of disturbed lands: An eco-friendly resource for plant nutrition. J. Mech. Cont. Math. Sci 4: 231–243. DOI: 10.26782/jmcms.spl.4/2019.11.00023.
Samal SI, Mansur I, Junaedi A. 2023. Exploration of indigenous arbuscular mycorrhizal fungi on Arenga pinnata Merr in post-mining land. Indones Min J 26 (1): 39-47. DOI: 10.30556/imj.Vol26.No1.2023.1285
Schenck NC, Perez Y. 1990. Mannual for the identification of VA mycorrhizal fungi. Synergitis Publication. Gainesville. USA.
Schüßler A, Walker C. 2010. The Glomeromycota. A species list with new families and new genera. With correction on July 2011. [online]. The Royal Botanic Garden Kew, Botanische Staatssammlung Munich, and Oregon State University.
Sheoran V, Sheoran AS, Poonia P. 2010. Soil reclamation of abandoned mine land by revegetation: A review. Int J Soil, Sediment Water 3 (2): 1–20.
Sinegani AAS, Yeganeh ME. 2017. The occurrence of arbuscular mycorrhizal fungi in soil and root of medicinal plants in Bu-Ali Sina garden in Hamadan, Iran. Biol J Microorganism 5 (20): 43-59.
Suharno, Rahayu I, Tanjung RHR, Sufaati S. 2022. New record of arbuscular mycorrhizal fungi (AMF) association with kebar grass (Biophytum petersianum Klotzsch.) in the grassland area of Kebar, Tambrauw Regency, West Papua, Indonesia. JTBB 7 (2): jtbb70021. DOI: 10.22146/jtbb.70021.
Suharno, Sancayaningsih RP, Soetarto ES, Kasiamdari RS. 2014. The Presence of Arbuscular Mycorrhizal Fungi in the Tailings of Mining Gold Timika as An Attempt of Environmentally Friendly. J. Manusia Lingkungan 21 (3): 295–303. DOI: 10.22146/jml.18556.
Suharno, Sancayaningsih RP, Soetarto ES, Kasiamdari RS. 2021. The growth response of pokem (Setaria italica L.) inoculated with arbuscular mycorrhizal fungi (AMF) from tailings area. J. Degrade. Min. Land Manage 8 (4): 2873-2880. DOI: 10.15243/jdmlm.2021.084.2873.
Suharno, Sufaati S, Agustini V, Tanjung RHR. 2018. Arbuscular mycorrhizal fungi associated with wati (Piper methysticum), a medicinal plant from Merauke Lowland, Papua, Indonesia. Biosaintifika: J Biol & Biol Educ 10 (2): 260-266. DOI: 10.15294/biosaintifika.v10i2.14303.
Suharno, Tanjung RHR, Sufaati S. 2020. Arbuscular mycorrhizal fungi accelerate the rehabilitation of mining areas. UGM Press. Yogyakarta.
Sun X.-G, Tang M. 2012. Comparison of four routinely used methods for assessing root colonization by arbuscular mycorrhizal fungi. Botany 90 (11): 1073–1083. DOI: 10.1139/b2012-084.
Taalab AS, Ageeb GW, Siam HS, Mahmoud SA. 2019. Some characteristics of calcareous soils: A review. Middle East J Agric Res 8 (1): 96-105.
Taher M, Amri MS, Susanti D, Kudos MBA, Nor FAMB, Syukri Y. 2020. Medicinal uses, phytochemistry, and pharmacological properties of Piper aduncum L. Sains Malays 49 (8): 1829–1851. http://dx.doi.org/10.17576/jsm-2020-4908-07.
Upadhye M, Kucheka M, Pujari R, Kadam S, Gunja P. 2021. Muntingia calabura: A comprehensive review. J Pharm Biol Sci 9 (2): 81–87. DOI: 10.18231/j.jpbs.2021.011.
Vierheilig H, Schweiger P, Brundrett M. 2005. An overview of methods for the detection and observation of arbuscular mycorrhizal fungi in roots. Physiol Plant 125: 393-404. DOI: 10.1111/j.1399-3054.2005.00564.x.
Wahab A, Muhammad M, Munir A, Abdi G, Zaman W, Ayaz A, Khizar C, Reddy SPP. 2023. Role of arbuscular mycorrhizal fungi in regulating growth, enhancing productivity, and potentially influencing ecosystems under abiotic and biotic stresses. Plants 12: 3102. DOI: 10.3390/plants12173102.
Wang F, Zhang L, Zhou J, Rengel Z, George TS, Feng G. 2022. Exploring the secrets of hyphosphere of arbuscular mycorrhizal fungi: Processes and ecological functions. Plant Soil 418: 1–22. DOI: 10.1007/s11104-022-05621-z.
Wibowo C, Mulyana M, Wildasari W. 2020. Species composition of understorey vegetation and soil properties in ex mining land silica and lime closure PT Holcim Indonesia Tbk. J Silvik Tropik 11 (2): 82-88.
Yan P, Hou H, Lv Y, Zhang H, Li J, Shao L, Xie Q, Liang Y, Li J, Ni X. 2023. Diversity characteristics of arbuscular mycorrhizal fungi communities in the soil along successional altitudes of Helan Mountain, arid, and semi-arid regions of China. Front. Microbiol. 14: 1099131. DOI: 10.3389/fmicb.2023.1099131.
Zhu S.-C, Zheng H-X, Liu W.-S, Liu C, Guo M.-N, Huot H, Morel JL, Qiu R.-L, Chao Y and Tang Y.-T. 2022. Plant-soil feedbacks for the restoration of degraded mine lands: A review. Front. Microbiol 12: 751794. DOI: 10.3389/fmicb.2021.751794.

Most read articles by the same author(s)

1 2 > >>