Combining ability and heterotic effects of maize (Zea mays) lines for drought tolerance using the line × tester method

##plugins.themes.bootstrap3.article.main##

ACHMAD AMZERI
SIGIT BUDI SANTOSO
FIRMANSYAH ADIPUTRA
SYAIFUL KHOIRI
KASWAN BADAMI
AHMAD SYAIFUL UMAM

Abstract

Abstract. Amzeri A, Santoso SB, Adiputra F, Khoiri S, Badami K, Umam AS. 2025. Combining ability and heterotic effects of maize (Zea mays) lines for drought tolerance using the line × tester method. Biodiversitas 26: 748-760. Assembling superior varieties requires information on the combining ability and heterosis of several lines being tested to select lines that can be used as parents in assembling varieties. This research aimed to determine General Combining Ability (GCA), Specific Combining Ability (SCA), and heterosis of maize lines using the line x tester method on dry land. The genetic material used was 40 hybrids from crossing 20 lines with UTM08.5 and UTM09.6 testers. The research used a Randomized Complete Block Design (RCBD) with 62 genotypes (20 lines, 2 testers, 40 hybrids) as treatments and was repeated three times. The research results showed that lines that have a significant negative GCA value in harvest age character and can be used as parents in assembling early maturity maize varieties are T2S-5-11, DuS-5-24, Su-S-4-2-4, Su-S-4 -1-12, Su-S-4-1-12, and Su-S-4-1-15. Lines with a large positive GCA value and can be used as parents for assembling maize varieties with high production character are T2S-5-11, Su-S-4-2-4, Su-S-4-1-12, Su-S-4-1-15, and Su-S-4-3-16. The crosses T2S-5-11 × UTM08.5, Su-S-4-2-4 × UTM 08.5, and Su-S-4-1-15 × UTM08.5 had significant negative SCA values ??for harvest age and significant positive SCA values for the production per hectare character so that the three cross combinations can be used as candidates for the formation of early maturity and high production hybrid maize varieties. The best crosses are ES-5-24 × UTM09.6, T2S-5-11 × UTM08.5, T2S-5-11 × UTM09.6, and TS-5-20 × UTM09.6. They have positive heterosis for production per hectare character and negative heterosis for harvest age character.

##plugins.themes.bootstrap3.article.details##

References
Abadi W, Sugiharto AN. 2019. Test of character prospectivess of several candidates of new hybrid of sweet corn (Zea mays L. var. saccharata). Jurnal Produksi Tanaman 7 (5): 939-948. [Indonesian]
Abed Hassan W, Hadi BH, Hamdalla MSH. 2020. Study the GCA and SCA effects of five inbred lines of maize according to half diallel mating system. Al-Qadisiyah J Agric Sci 10 (2): 343-348. DOI: 10.33794/qjas.2020.167496.
Abikkumar C, Senthil N, Mohanapriya B, Parathasarathi G, Sivakumar S, Gurusamy K, Sudha M. 2023. Correlation and variability analysis for yield and related traits of sweet corn in backcross populations. J Phytol 15 (S1): S14-S21. DOI: 10.25081/jp.2023.v15.8608.
Akfindarwan AK, Farid M, Syaiful SA, Anshori MF, Nur A. 2023. Selection criteria and index analysis for the S2 maize lines of double-crosses. Biodiversitas 24: 192-199. DOI: DOI: 10.13057/biodiv/d240123.
Al-Mamun M, Rafii MY, Misran AB, Berahim Z, Ahmad Z, Khan MMH, Oladosu Y. 2022a. Combining ability and gene action for yield improvement in kenaf (Hibiscus cannabinus L.) under tropical conditions through diallel mating design. Sci Rep 12 (1): 9646. DOI: 10.1038/s41598-022-13529-y.
Al-Mamun M, Rafii MY, Misran AB, Berahim Z, Ahmad Z, Khan MMH, Oladosu Y. 2023. Heterosis and combining ability estimate on yield and yield-related traits in a half diallel crosses of kenaf (Hibiscus cannabinus L.) in Malaysia. J Nat Fibers 20 (1): 2192541. DOI: 10.1080/15440478.2023.2192541.
Amzeri A, Badami K, Santoso SB, Sukma KP. 2022a. Morphological and molecular characterization of maize lines tolerance to drought stress. Biodiversitas 23 (11): 5844-5853. DOI: 10.13057/biodiv/d231138.
Amzeri A, Badami K, Zuhri A, Pawana G, Suhartono S, Khoiri S, Umam AS, Asmoro Y, Rohmatin S, Sa’diyah H, Badriyah B. 2022b. Assessment of genetic parameters for vitamin A, vitamin C, and TSS content results in melon line crosses at five maturity stages. Intl J Agron 2022: 3661952. DOI: 10.1155/2022/3661952.
Amzeri A, Suhartono S, Pawana G, Ma’arif A, Suwarno I. 2023. Genotype by environment interaction on early-maturing and high-yield maize hybrids. J Hum Earth Future 4 (1): 54-69. DOI: 10.28991/HEF-2023-04-01-05.
Andayani NN, Aqil M, Efendi R, Azrai M. 2018. Line × tester analysis across equatorial environments to study combining ability of Indonesian maize inbred. Asian J Agric Biol 6 (2): 213-220.
Aslam M, Maqbool MA, Cengiz R. 2015. Effects of drought on maize. In: Drought Stress in Maize (Zea mays L.). SpringerBriefs in Agriculture. Springer, Cham. DOI: 10.1007/978-3-319-25442-5_2.
Azrai M, Mejaya J, Aswidinnoor DH. 2014. Combining ability of high quality protein maize inbred lines. Penelitian Pertanian Tanaman Pangan 33 (3): 137-147. ?Indonesian?
Azrai M. 2013. Jagung Hibrida Genjah: Prospek pengembangan menghadapi perubahan iklim. Iptek Tanaman Pangan 8 (2): 90-96. ?Indonesian?
Begna T. 2021. Combining ability and heterosis in plant improvement. Open J Plant Sci 6 (1): 108-117. DOI: 10.17352/ojps.000043.
Billah MM, Matin MQI, Talukder MZA, Harun M, Alam MK, Sharmin S, Subramanyam P, Ibrar M. 2025. Study on combining ability for yield and yield contributing characters of short statured maize inbred lines at over locations. Am J Plant Sci 16 (1): 170-179. DOI: DOI: 10.4236/ajps.2025.161015.
Boeven PHG, Zhao Y, Thorwarth P et al. 2020. Negative dominance and dominance-by-dominance epistatic effects reduce grain-yield heterosis in wide crosses in wheat. Sci Adv 6 (24): eaay4897. DOI: 10.1126/sciadv.aay4897.
Chen J, Zhou H, Xie W, Xia D, Gao G, Zhang Q, Wang G, Lian X, Xiao J, He Y. 2019. Genome-wide association analyses reveal the genetic basis of combining ability in rice. Plant Biotechnol J 17 (11): 2211-2222. DOI: 10.1111/pbi.13134.
Chikh-Rouhou H, Kienbaum L, Gharib AHAM, Fayos O, Garcés-Claver A. 2024. Combining ability and hybrid breeding in Tunisian Melon (Cucumis melo L.) for fruit traits. Horticulturae 10 (7): 724. DOI: 10.3390/horticulturae10070724.
Chiuta NE, Mutengwa CS. 2020. Combining ability of quality protein maize inbred lines for yield and morpho-agronomic traits under optimum as well as combined drought and heat-stressed conditions. Agronomy 10 (2): 184. DOI: 10.3390/agronomy10020184.
El-Gammal AA, Konber RM, Magd AM. 2019. Evaluation of bread wheat crosses via line × tester mating design. East Afr Scholars J Agric Life Sci 2 (3): 171-178. DOI: 10.36349/easjals.2019.v02i03.012.
Engida BT, Wegary D, Keno T, Mekonnen TW. 2024. Combining ability and genetic distance analysis of mid altitude sub-humid agroecology adapted maize inbred lines for high grain yield. Heliyon 10 (11): e32267. DOI: 10.1016/j.heliyon.2024.e32267.
FAO [Food and Agriculture Organization]. 2021. Value of agricultural production. https://www.fao.org/faostat/en/#data/QV.
FAO [Food and Agriculture Organization]. 2024. Value of agriculture production. https://www.fao.org/faostat/en/#data/QCL.
Fasahat P, Rajabi A, Rad JM, Derera J. 2016. Principles and utilization of combining ability in plant breeding. Biomet Biostat Intl J 4 (1): 1-22. DOI: 10.15406/bbij.2016.04.00085.
Faysal ASM, Ali L, Azam MG, Sarker U, Ercisli S, Golokhvast KS, Marc RA. 2022. Genetic variability, character association, and path coefficient analysis in transplant aman rice genotypes. Plants 11 (21): 2952. DOI: 10.3390/plants11212952.
Fikri M, Farid M, Musa Y, Anshori MF, Nur A. 2023. Selected agronomic traits and drone application in corn yield prediction. Sabrao J Breed Genet 52 (2): 508-515. DOI: 10.54910/sabrao2023.55.2.22.
Gaballah MM, Attia KA, Ghoneim AM, Khan N, El-Ezz AF, Yang B, Xiao L, Ibrahim EI, Al-Doss AA. 2022. Assessment of genetic parameters and gene action associated with heterosis for enhancing yield characters in novel hybrid rice parental lines. Plants 11 (3): 266. DOI: 10.3390/plants11030266.
Hallauer AR, Carena MJ, Filho JBM. 2010. Quantitative Genetics in Maize Breeding. Springer, New York.
Hanafiah DS, Siregar LAM, Lubis K, Haryati, Rahmadana F. 2023. The heterosis, heterobeltiosis, and the yielding ability of hybrids of three parental crossings of soybean (Glycine max). Biodiversitas 24 (2): 1032-1038. DOI: 10.13057/biodiv/d240244.
Hartanti DAS, Yuliana AI. 2024. Analysis of the growth of two maize cultivars under various combinations of inorganic and bio-fertilization. Agrovigor: Jurnal Agroekoteknologi 17 (2): 71-78. DOI: 10.21107/agrovigor.v17i2.27569.
ICALRRD. 2018. Land Map 1:50.000 Scale; Indonesian Center for Agricultural Land Resources Research and Development, Bogor, Indonesia.
Jaisi S, Thapa A, Poudel MR, Gairhe HP, Budathoki KK, Karki B. 2021. Relationship between wheat yield and yield attributing character at late sowing condition. Indonesian J Agric Res 4 (2): 142-155. DOI: 10.32734/injar.v4i2.6405.
Kabi M, Baisakh B, Dash M, Tripathy SK, Sahu S, Panigrahi KK. 2021. Gene action and combining ability study in sesame. Plant Arch 21 (1): 1810-1818. DOI: 10.51470/plantarchives.2021.v21.no1.248.
Kahriman F, Egesel CÖ, Orhun GE, Alaca B, Avci F. 2016. Comparison of graphical analyses for maize genetic experiments: Application of biplots and polar plot to line × tester design. Chilean J Agric Res 76 (3): 285-293. DOI: 10.4067/S0718-58392016000300004.
Kargbo SS, Showemimo F, Akintokun P, Porbeni J. 2019. Combining ability analysis and gene action for yield and yield related traits in rice (Oryza sativa L.) under saline conditions. J Plant Breed Genet 7 (2): 63-74. DOI: 10.33687/pbg.007.02.2831.
Karyawati AS, Puspitaningrum ESV. 2021. Correlation and path analysis for agronomic traits contributing to yield in 30 genotypes of soybean. Biodiversitas 22 (3): 1146-1151. DOI: 10.13057/biodiv/d220309.
Kose A. 2017. Gene action and combining ability in line × tester population of Safflower (Carthamus tinctorius L.). Turkish J Field Crops 22 (2): 197-203. DOI: 10.17557/tjfc.356216.
Krisnawati A, Adie MM. 2022. Expression of heterosis, heterobeltiosis, and gene action in quantitative characters of soybean (Glycine max). Biodiversitas 23 (4): 1745-1751. DOI: 10.13057/biodiv/d230404.
Labroo MR, Studer AJ, Rutkoski JE. 2021. Heterosis and hybrid crop breeding: A multidisciplinary review. Front Genet 12: 643761. DOI: 10.3389/fgene.2021.643761.
Lamichhane S, Thapa S. 2022. Advances from conventional to modern plant breeding methodologies. Plant Breed Biotechnol 10 (1): 1-14. DOI: 10.9787/PBB.2022.10.1.1.
Liu S, Wang H, Qin F. 2023. Genetic dissection of drought resistance for trait improvement in crops. Crop J 11 (4): 975-985. DOI: 10.1016/j.cj.2023.05.002.
Madhunapantula VP, Talekar SC, Kachapur RM, Salakinkop SR, Lal M, Naidu G. 2023. Frequency of heterotic hybrids in relation to general combining ability of parents in sweet corn. PeerJ 11: e16134. DOI: 10.7717/peerj.16134.
Marthandan V, Geetha R, Kumutha K, Renganathan VG, Karthikeyan A, Ramalingam J. 2020. Seed priming: A feasible strategy to enhance drought tolerance in crop plants. Intl J Mol Sci 21 (21): 8258. DOI: 10.3390/ijms21218258.
Modarresi M, AllahGholipour M, Ebadi AA. 2024. Estimation of gene effect and combining ability for yield and yield components using line × tester analysis in rice (Oryza sativa). Plant Breed Biotechnol 12: 17-29. DOI: 10.9787/PBB.2024.12.17.
Nivethitha T, Ravikesavan R, Vinodhana NK, Senthil N. 2023. Development and genetic evaluation of single cross super-sweet (Shrunken 2) sweet corn hybrids (Zea mays var. saccharata L.): A novel choice for commercial market. Electronic J Plant Breed 14 (2): 429-438. DOI: 10.37992/2023.1402.053.
Novrika D, Herison C, Fahrurrozi. 2016. Korelasi antar komponen pertumbuhan vegetatif dan generatif dengan hasil pada delapan belas genotipe gandum di dataran tinggi. Akta Agrosia 19 (2): 93-103. ?Indonesian?
Oguz MC, Aycan M, Oguz E, Poyraz I, Yildiz M. 2022. Drought stress tolerance in plants: Interplay of molecular, biochemical and physiological responses in important development stages. Physiologia 2 (4): 180-197. DOI: 10.3390/physiologia2040015.
Patthawaro P, Dermail A, Chankaew S, Simla S, Lomthaisong K, Lertrat K, Suriharn K. 2023. Inbred-hybrid relationship and heterosis on agronomic traits in bi-color sweet and waxy corn. Biodiversitas 24 (11): 6351-6359. DOI: 10.13057/biodiv/d241160.
Priyanto SB, Makkulawu AT, Iriany RN. 2019. Estimation combining ability of maize lines through line × tester method. J Penelitian Pertanian Tanaman Pangan 3 (2): 83-90. DOI: 10.21082/jpptp.v3n2.2019.p83-90.
Rachman F, Trikoesoemaningtyas, Wirnas D, Reflinur. 2022. Estimation of genetic parameters and heterosis through line × tester crosses of national sorghum varieties and local Indonesian cultivars. Biodiversitas 23 (3): 1588-1597. DOI: 10.13057/biodiv/d230349.
Rehman AU, Dang T, Qamar S, Ilyas A, Fatema R, Kafle M, Hussain Z, Masood S, Iqbal S, Shahzad K. 2021. Review revisiting plant heterosis-From field scale to molecules. Genes 12 (11): 1688. DOI: 10.3390/genes12111688.
Rozi F, Santoso AB, Mahendri IGAP, Hutapea RTP, Wamaer D, Siagian V, Elisabeth DAA, Sugiono S, Handoko H, Subagio H, Syam A. 2023. Indonesian market demand patterns for food commodity sources of carbohydrates in facing the global food crisis. Heliyon 9 (6): e16809. DOI: 10.1016/j.heliyon.2023.e16809.
Sah RP, Chakraborty M, Prasad K, Pandit M, Tudu VK, Chakravarty MK, Narayan SC, Rana M, Moharana D. 2020. Impact of water deficit sress in maize: Phenology and yield components. Sci Rep 10 (1): 2944. DOI: 10.1038/s41598-020-59689-7.
Sang Z, Wang H, Yang Y, Zhang Z, Liu X, Li Z, Xu Y. 2022. Epistasis activation contributes substantially to heterosis in temperate by tropical maize hybrids. Front Plant Sci 13: 921608. DOI: 10.3389/fpls.2022.921608.
Seleiman MF, Al-Suhaibani N, Ali N, Akmal M, Alotaibi M, Refay Y, Dindaroglu T, Abdul-Wajid HH, Battaglia ML. 2021. Plants drought stress impacts on plants and different approaches to alleviate its adverse effects. Plant 10 (2): 259. DOI: 10.3390/plants10020259.
Sinare B, Desmae H, Nebié B, Konate D, Eleblu J, Miningou A, Traoré A, Ofori K, Zagre B. 2024. Diallel analysis, maternal effect and heritability in groundnut for yield components and oil content. Heliyon 10 (12): e33379. DOI: 10.1016/j.heliyon.2024.e33379.
Singh RK, Chaudary BD. 1979. Biometrical Methods in Quantitative Genetic Analysis. Kalyani Publishers, New Delhi, India.
Sudika IW, Soemeinaboedhy IN, Sutresna IW. 2023. Genetic diversity and gain quantitative characters of maize from index-Based selection at two dry lands in Lombok, Indonesia. Biodiversitas 24 (1): 11-19. DOI: 10.13057/biodiv/d240102.
Suhartono, Amzeri A. 2021. Selection of maize plants resistant to drought stress in the vegetative phase using polyethylene glycol (Peg 6000). Agricultural Mechanization in Asia 52 (1): 2255-2261.
Sunny A, Chakraborty NR, Kumar A, Singh BK, Paul A, Maman S, Sebastian A, Darko DA. 2022. Understanding gene action, combining ability, and heterosis to identify superior aromatic rice hybrids using Artificial Neural Network. J Food Qual 2022 (1): 9282733. DOI: 10.1155/2022/9282733.
Suyadi, Saptadi D, Sugiharto AN. 2021. Combining ability of Indonesian tropical maize in two different seasons. Agrivita J Agric Sci 43 (2): 347-357. DOI: 10.17503/agrivita.v43i2.2915.
Tabu I, Lubobo K, Mbuya K, Kimuni N. 2023. Heterosis and line-by-tester combining ability analysis for grain yield and provitamin A in maize. Sabrao J Breed Genet 55 (3): 697-707. DOI: 10.54910/sabrao2023.55.3.8.
Viana JMS. 2023. The impact of epistasis in the heterosis and combining ability analyses. Front Plant Sci 14: 1168419. DOI: 10.3389/fpls.2023.1168419.
Wakchaure R, Ganguly S, Praveen K, Sharma S, Kumar A, Mahajan T, Qadri K. 2015. Importance of heterosis in animals: A review. Intl J Adv Eng Technol Innov Sci 1 (1): 1-5.
Walpole RE. 1982. Introduction of Statistic (3rd Edition). MacMillan Publishing Company, London.
Weber VS, Melchinger AE, Magorokosho C, Makumbi D, Bänziger M, Atlin GN. 2012. Efficiency of managed-Stress screening of elite maize hybrids under drought and low nitrogen for yield under rainfed conditions in Southern Africa. Crop Sci 52 (3): 1011-1020. DOI: 10.2135/cropsci2011.09.0486.
Wiguna G, Sumpena U. 2015. Evaluation of heterosis and heterobeltiosis value of some cucumber crosses (Cucumis sativus L.) at different altitude. J Hortikultura 26: 1-8. DOI: 10.21082/jhort.v26n1.2016.p1-8. [Indonesian]
Wu X, Liu Y, Zhang Y, Gu R. 2021. Advances in research on the mechanism of heterosis in plants. Front Plant Sci 12: 745726. DOI: 10.3389/fpls.2021.745726.
Würschum T, Zhu X, Zhao Y, Jiang Y, Reif JC, Maurer HP. 2023. Maximization through optimization? On the relationship between hybrid performance and parental genetic distance. Theor Appl Genet 136 (9): 186. DOI: 10.1007/s00122-023-04436-5.
Yang X, Lu M, Wang Y, Wang Y, Liu Z, Chen S. 2021. Response mechanism of plants to drought stress. Horticulturae 7 (3): 50. DOI: 10.3390/horticulturae7030050.
Zuffo AM, de Oliveira AM, Aguilera JG, Ratke RF, Steiner F, de Abreu CM, Fonseca WL, dos Santos AS, Argentel-Martínez L, Morales-Aranibar L, Gonzales HHS. 2023. Correlations and path analysis of second-crop corn hybrids for maximum grain yield performance. Aust J Crop Sci 17 (8): 639-644. DOI: 10.21475/ajcs.23.17.08.p3911.