Short communication: Variations in leaf morphological characters of Shorea leprosula in progeny trial stand of a logging concession in Kalimantan, Indonesia

##plugins.themes.bootstrap3.article.main##

ALNUS MEINATA
MUHAMMAD NA’IEM
DWI TYANINGSIH ADRIYANTI

Abstract

Indonesia has the highest distribution of Dipterocarpaceae members, and Shorea leprosula is one of the species that has a natural hybrid in its habitat. Furthermore, the members have intermediate morphological character with the neighboring species, Shorea curtisii. This study aimed to investigate the morphological variations of Shorea leprosula Miq. Progeny trial in PT Sari Bumi Kusuma. The morphological level of 72 Shorea leprosula in PT Sari Bumi Kusuma was identified through sampling. Furthermore, macroscopic and microscopic observations were conducted, and the measurement data were analyzed using cluster and principal component analyses to explain the morphological variable contribution. The results showed leaf architecture variations in laminar shape, apex shape, base shape, and midrib thickness category. The cluster analyses classified the samples into four cluster groups and they consist of a notophyll leaf size category with a rounded base. Meanwhile, the second group consists of an ellipse laminar shape with medium midrib thickness, and the third has an oblong laminar with an obtuse apex shape. The fourth group has a notophyll leaf size category with an obtuse base. The principal component analysis showed that the base shape has the highest contribution to diversity in the samples.

##plugins.themes.bootstrap3.article.details##

References
Appanah, S. 1993. Mass flowering of dipterocarp forests in the aseasonal tropics. J. Biosci., 18(4), 457–474.
Appanah, Simmathiri, & Turnbull, JM. 1998. A review of dipterocarps: taxonomy, ecology and silviculture. In A review of dipterocarps: taxonomy, ecology and silviculture.
Ashton PS 1982. Dipterocarpaceae. In: van Steenis CGGJ (ed) Flora Malesiana (9): 237-552.
Campbell, NA, Reece, JB, Urry, LA, Cain, ML, Wasserman, SA, Minorsky, PV, & Jackson, RB. 2009. Biology, eight edition.
Celadiña, DA, Buot Jr, IE, Madulid, DA, Evangelista, TT, & Tandang, DN. 2012. Leaf Architecture of Selected Philippine Cinnamomum Schaeff. (Lauraceae) Species. Thail. Nat. Hist. Museum J., 6(2), 89–111.
Dayanandan, S, Ashton, PS, Williams, SM, & Primack, RB. 1999. Phylogeny of the tropical tree family Dipterocarpaceae based on nucleotide sequences of the chloroplast rbcL gene. Am. J. Bot., 86(8), 1182–1190.
de Groot, RS. 1986. A functional ecosystem evaluation method - A tool in environemntal planning and decision making. Nat. Conserv. Dep. - Agric. Univ. Wageningen.
Doyle, JA. 2007. Systematic value and evolution of leaf architecture across the angiosperms in light of molecular phylogenetic analyses. CFS Cour. Forschungsinstitut Senckenb.
Falster, DS, & Westoby, M. 2003. Leaf size and angle vary widely across species: What consequences for light interception? New Phytol.
Garnier, E, Navas, ML, & Grigulis, K. 2016. Plant Functional Diversity. In Plant Functional Diversity.
Gottlieb, LD. 1984. Genetics and morphological evolution in plants. Am. Nat., 123(5), 681–709.
Hadi, MN. 2018. Keanekaragaman spesies dan hubungan kekerabatan fenetik Caesalpinia L. di Pulau Jawa Berdasarkan Anatomi dan Venasi Daun. Universitas Gadjah Mada.
Haebahan, K. 2017. Evaluasi Uji Keturunan Shorea leprosula Miq. Populasi Bukit Baka dan Gunung Bunga di PT Sari Bumi Kusuma, Kalimantan Tengah. Universitas Gadjah Mada.
Hickey, L, Ash, A, Ellis, B, Johnson, K, Wilf, P, & Wing, S. 1999. Manual of Leaf Architecture.
Hussein, BR, Malik, OA, Ong, WH, & Slik, JWF. 2021. Reconstruction of damaged herbarium leaves using deep learning techniques for improving classification accuracy. Ecol. Inform., 61(January), 101243.
Jessica, B, & Buot Jr, IE. 2014. Leaf Architecture of Ten Species of Philippine Terminalia Linn ( Combretaceae ). 3(3), 83–88.
Jones, JH. 1986. Evolution of the Fagaceae: The Implications of Foliar Features. Ann. Missouri Bot. Gard.
Kamiya, K, Gan, YY, Lum, SKY, Khoo, MS, Chua, SC, & Faizu, NNH. 2011. Morphological and molecular evidence of natural hybridization in Shorea (Dipterocarpaceae). Tree Genet. & Genomes, 7(2), 297–306.
Khadivi-Khub, A & Anjam, K. 2014. Morphological characterization of Prunus scoparia using multivariate analysis. Plant Syst. Evol., 300(6), 1361–1372.
Lillo, E, Buot Jr, IEB., Malaki, AB, Alcazar, SMT, Rosales, R, Diaz, JLB, Redoblado, BR, & Gealon, GGG. (2019). Short Communication: Leaf architectural characteristics of Cinnamomum cebuense Kosterm. (Lauraceae) distributed in different geographical locations, taxonomic identification and conservation concerns. Biodiversitas J. Biol. Divers., 21(1), 246–251.
Martínez-Cabrera, D, Terrazas, T, & Ochoterena, H. 2009. Foliar and petiole anatomy of tribe hamelieae and other rubiaceae. Ann. Missouri Bot. Gard.
Meinata, A, Na’iem, M, Adriyanti, DT, & Syahbudin, A. 2021. Leaf architecture of 35 species of dipterocarpaceae cultivated in forest area with special purposes in carita, banten, indonesia. Biodiversitas, 22(7), 2952–2960.
Newman, MF, Burgess, PF, & Whitmore, TC. 1996. Manuals of Dipterocarps for Foresters: Sumatra Medium and Heavy Hardwoods. Edinburgh: Royal Botanic Garden.
Onda, JEMC, & Uot, INEB. 2018. Species Delineation Of The Genus Diplazium Swartz (Athyriaceae) Using Leaf Architecture Characters Jennifer. 25(2), 123–133.
Purwaningsih. 2004. Ecological distribution of Dipterocarpaceae species in Indonesia. Biodiversitas J. Biol. Divers., 5(2), 89–95.
Reece, JB, Urry, LA, Cain, ML, Wasserman, SA, Minorsky, PV, & Jackson, RB. 2010. Campbell Biology. In Campbell Biology.
Sack, L, Dietrich, EM, Streeter, CM, Sánchez-Gómez, D, & Holbrook, NM. 2008. Leaf palmate venation and vascular redundancy confer tolerance of hydraulic disruption. Proc. Natl. Acad. Sci. U. S. A.
Sack, L, & Scoffoni, C. 2013. Leaf venation: Structure, function, development, evolution, ecology and applications in the past, present and future. New Phytol., 198(4), 983–1000.
Schmid, R, & Ruzin, SE. 1999. Plant Microtechnique and Microscopy. Taxon.
Schöngart, J, Piedade, MTF, Ludwigshausen, S, Horna, V, & Worbes, M. 2002. Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests. J. Trop. Ecol.
Soekotjo. 2009. Teknik Silvikultur Intensif. Gadjah Mada University Press.
Sulistyorini, IS, & Boer, C. 2010. Analisis Pengembangan Potensi Ekowisata di Kawasan Hutan Wehea Kecamatan Muara Wahau Kabupaten Kutai Timur. J. Kehutan. Trop. Humida, 1(3), 54–63.
Villareal, AMM, & Buot Jr, IE. 2015. Leaf Architecture of Hoya incrassata Warb. and Hoya crassicaulis Elmer x Kloppenb. (Apocynaceae): Taxonomic Identification and Conservation Concerns. IAMURE Int. J. Ecol. Conserv., 15(1).
Wahyudi, I, & Sitanggang, JJ. 2016. Wood Quality of Cultivated Red Meranti (Shorea leprosula Miq.). J. Ilmu Pertan. Indones., 21(2), 140–145.
Widiyatno, Purnomo, S, Soekotjo, Naiem, M, Hardiwinoto, S, & Kasmujiono. 2013. The Growth of Selected Shorea Spp in Secondary Tropical Rain Forest: The Effect of Silviculture Treatment to Improve Growth Quality of Shorea Spp. Procedia Environ. Sci., 17(May 2015), 160–166.
Wistara, NJ, Sukowati, M, & Pamoengkas, P. 2016. The properties of red meranti wood (Shorea leprosula Miq) from stand with thinning and shade free gap treatments. J. Indian Acad. Wood Sci., 13(1), 21–32.