The growth, aboveground biomass, crown development, and leaf characteristics of three Eucalyptus species at initial stage of planting in Jepara, Indonesia

##plugins.themes.bootstrap3.article.main##

PANDU YUDHA ADI PUTRA WIRABUANA
Syamsu Alam
Jeriels Matatula
Moehar Marghiy Harahap
Yusanto Nugroho
Fahmi Idris
Alnus Meinata
Dewa Ayu Sekar

Abstract

Abstract. Wirabuana PYAP, Alam S, Matatula J, Harahap MM, Nugroho Y, Idris F, Meinata A, Sekar DA. 2021. The growth, aboveground biomass, crown development, and leaf characteristics of three Eucalyptus species at initial stage of planting in Jepara, Indonesia. Biodiversitas 22: 2859-2869. Industry development, climate change mitigation and renewable energy currently become the most essential challenge in tropical forest management, primarily in Indonesia. The existence of tropical forests is not only managed to maintain the stability of wood supply for commercial industries but also to reduce greenhouse gas emissions in the atmosphere and to generate energy alternatives from tree biomass. To answer this challenge, the development of fast-growing species like eucalyptus can become a good solution. However, the productivity of eucalyptus depends on its adaptability to the site condition. Therefore, understanding site-species interaction becomes the fundamental requirement before planted on a large scale. This study aimed to evaluate the initial performance of eucalyptus species developed in Jepara. An experiment consisted of three different eucalyptus species, i.e., E. alba, E. pellita, and E. urophylla, was established using a randomized complete block design. Sixteen parameters were selected to assess the eucalyptus performance, including survival, height, diameter, biomass accumulation (stem, branches, foliage, and total aboveground), crown length, crown radius, crown projection area, crown ratio, individual leaf area, individual leaf dry weight, specific leaf area, leaf mass area, and leaf area index. The comparison of the mean of tree attributes from each species was examined using ANOVA, followed by HSD Tukey. Results showed that all measured parameters indicated a significant difference among the three species (p<0.05), except for survival, foliage biomass, and crown ratio (p>0.05). The preliminary performance of E. pellita was relatively better than the other two species, mainly related to height (3.00±0.21 m), total aboveground biomass (49.86±3.60 kg ha-1), crown projection area (2.68±0.27 m2 ), and leaf area index (5.76±0.44). Our study concluded the initial performance of E. pellita in Jepara was substantially superior to E. alba and E. urophylla. Nevertheless, continuous evaluation is needed to monitor the consistent performance of those species in the study area.

##plugins.themes.bootstrap3.article.details##

References
Acuña E, Cancino J, Rubilar R, Sandoval S. 2018. Aboveground biomass growth and yield of first rotation cutting cycle of acacia and eucalyptus short rotation dendroenergy crops. Revista Árvore. 41: 1–10. DOI: 10.1590/1806-90882017000600008
Aggangan NS, Moon HK, Han SH. 2013. Growth and nutrient accumulation of Eucalyptus pellita F. Muell. in response to inoculation with edible ectomycorrhizal mushrooms. Asia Life Sciences. 22: 95–112.
Aguilos R, Marquez C, Adornado H, Aguilos M. 2020. Domesticating commercially important native tree species in the Philippines: early growth performance level. Forests. 11: 1–15. DOI: 10.3390/f11080885
Altanzagas B, Luo Y, Altansukh B, Dorjsuren C, Fang J, Hu H. 2019. Allometric equations for estimating the above-ground biomass of five forest tree species in Khangai, Mongolia. Forests. 10: 1–17. DOI: 10.3390/f10080661
Amezquita PSM, Rubiano JAM, Filho NFDB, Cipriani HN. 2018. Fertilization effects on Eucalyptus pellita F. Muell productivity in the Colombian Orinoco Region. Revista Arvore. 42: 1–8. DOI: 10.1590/1806-9088201800050002
Barreiro S, Tomé M. 2012. Analysis of the impact of the use of eucalyptus biomass for energy on wood availability for eucalyptus forest in Portugal: a simulation study. Ecology and Society. 17. DOI: 10.5751/ES-04642-170214
Bassaco MVM, Motta ACV, Pauletti V, Prior SA, Nisgoski S, Ferreira CF. 2018. Nitrogen, phosphorus, and potassium requirements for Eucalyptus urograndis plantations in southern Brazil. New Forests. 49: 681–697. DOI: 10.1007/s11056-018-9658-0
Binkley D, Campoe OC, Gspaltl M, Forrester DI. 2013. Light absorption and use efficiency in forests: Why patterns differ for trees and stands. Forest Ecology and Management. 288: 5–13. DOI: 10.1016/j.foreco.2011.11.002
Bréda NJJ. 2008. Leaf area index. In: Encyclopedia of Ecology. DOI: 10.1016/B978-0-444-63768-0.00849-0
Cavalett O, Slettmo SN, Cherubini F. 2018. Energy and environmental aspects of using eucalyptus from Brazil for energy and transportation services in Europe. Sustainability. 10: 1–18. DOI: 10.3390/su10114068
De La Riva EG, Olmo M, Poorter H, Ubera JL, Villar R. 2016. Leaf mass per area (LMA) and its relationship with leaf structure and anatomy in 34 mediterranean woody species along a water availability gradient. PLoS ONE. 11: 1–18. DOI: 10.1371/journal.pone.0148788
DeRose RJ, Seymour RS. 2009. The effect of site quality on growth efficiency of upper crown class Picea rubens and Abies balsamea in Maine, USA. Canadian Journal of Forest Research. 39: 777–784. DOI: 10.1139/X09-012
Dong L, Zhang L, Li F. 2018. Additive biomass equations based on different dendrometric variables for two dominant species (Larix gmelini Rupr. and Betula platyphylla Suk.) in natural forests in the Eastern Daxing’an Mountains, Northeast China. Forests. 9: 1–24. DOI: 10.3390/f9050261
Dwyer JM, Hobbs RJ, Mayfield MM. 2014. Specific leaf area responses to environmental gradients through space and time. Ecology. 95: 399–410. DOI: 10.1890/13-0412.1
Estefan G, Sommer R, Ryan J. 2013. Methods of soil, plant, and water analysis. International Center for Agriculture Research in the Dry Areas, pp. 1–243. Retrieved from https://www.gob.mx/siap/articulos/cierre-estadistico-de-la-produccion-ganadera-2017?idiom=es
Ferreira GWD, Soares EMB, Oliveira FCC, Silva IR, Dungait JAJ, Souza IF, Vergütz L. 2016. Nutrient release from decomposing eucalyptus harvest residues following simulated management practices in multiple sites in Brazil. Forest Ecology and Management. 370: 1–11. DOI: 10.1016/j.foreco.2016.03.047
Ferreira MC, Santos RC dos, Castro RVO, Carneiro A de CO, Silva GGC da, Castro AFNM, Costa SE de L, Pimenta AS. 2017. Biomass and energy production at short rotation eucalyptus clonal plantations deployed in Rio Grande Do Norte1. Revista Árvore. 41: 1–7. DOI: 10.1590/1806-90882017000500004
Forrester DI. 2013. Growth responses to thinning, pruning and fertiliser application in Eucalyptus plantations: A review of their production ecology and interactions. Forest Ecology and Management. 310: 336–347. DOI: 10.1016/j.foreco.2013.08.047
Forrester DI, Collopy JJ, Beadle CL, Baker TG. 2012. Interactive effects of simultaneously applied thinning, pruning and fertiliser application treatments on growth, biomass production and crown architecture in a young Eucalyptus nitens plantation. Forest Ecology and Management. 267: 104–116. - DOI: 10.1016/j.foreco.2011.11.039
Gonçalves JLM, Wichert MCP, Gava JL, Masetto A V, Junior AJC, Serrano MIP, Mello SLM. 2010. Soil fertility and growth of Eucalyptus grandis in Brazil under different residue management practices. Southern Forests?. 69: 95–102. DOI: 10.2989/SHFJ.2007.69.2.4.289
González-García M, Hevia A, Majada J, Rubiera F, Barrio-Anta M. 2016. Nutritional, carbon and energy evaluation of Eucalyptus nitens short rotation bioenergy plantations in northwestern Spain. IForest. 9: 303–310. DOI: 10.3832/ifor1505-008
Gutiérrez-Soto M V., Pacheco A, Holbrook NM. 2008. Leaf age and the timing of leaf abscission in two tropical dry forest trees. Trees. 22: 393–401. DOI: 10.1007/s00468-007-0200-9
Hakamada R, Giunti Neto C, de Lemos CCZ, Silva SR, Otto MSG, Hall KB, Stape JL. 2016. Validation of an efficient visual method for estimating leaf area index in clonal Eucalyptus plantations. Southern Forests. 78: 275–281. DOI: 10.2989/20702620.2016.1201641
Hakamada R, Hubbard RM, Ferraz S, Stape JL. 2017. Biomass production and potential water stress increase with planting density in four highly productive clonal Eucalyptus genotypes. Southern Forests. 79: 251–257. DOI: 10.2989/20702620.2016.1256041
Halomoan SST, Wawan, Adiwirman. 2015. Effect of fertilization on the growth and biomass of Acacia mangium and Eucalyptus hybrid (E . grandis x E . pellita). Journal of Tropical Soils. 20: 157–166. DOI: 10.5400/jts.2015.20.3.157
Harwood CE, Alloysius D, Pomroy P, Robson KW, Haines MW. 1997. Early growth and survival of Eucalyptus pellita provenances in a range of tropical environments , compared with E. grandis , E. urophylla and Acacia mangium. New Forests. 14: 203–219.
Hii SY, Ha KS, Ngui ML, Ak Penguang S, Duju A, Teng XY, Meder R. 2017. Assessment of plantation-grown Eucalyptus pellita in Borneo, Malaysia for solid wood utilisation. Australian Forestry. 80: 26–33. DOI: 10.1080/00049158.2016.1272526
Houghton RA, Hall F, Goetz SJ. 2009. Importance of biomass in the global carbon cycle. Journal of Geophysical Research: 114: 1–13. DOI: 10.1029/2009JG000935
Hung TD, Brawner JT, Meder R. 2015. Estimates of genetic parameters for growth and wood properties in Eucalyptus pellita F . Muell . to support tree breeding in Vietnam. Annals of Forest Science. 72: 205–217. DOI: 10.1007/s13595-014-0426-9
Karavin N. 2013. Effects of leaf and plant age on specific leaf area in deciduous tree species Quercus cerris L. var. cerris. Bangladesh Journal of Botany. 42: 301–306. DOI: 10.3329/bjb.v42i2.18034
Kaul M, Mohren GMJ, Dadhwal VK. 2010. Carbon storage and sequestration potential of selected tree species in India. Mitigation and Adaptation Strategies for Global Change. 15: 489–510. DOI: 10.1007/s11027-010-9230-5
Kohl M, Neupane PR, Lotfiomran N. 2017. The impact of tree age on biomass growth and carbon accumulation capacity?: a retrospective analysis using tree ring data of three tropical tree species grown in natural forests of Suriname. PLoS ONE. 12: 1–17.
Kweon D, Comeau PG. 2019. Relationships between tree survival, stand structure and age in trembling aspen dominated stands. Forest Ecology and Management. 438: 114–122. DOI: 10.1016/j.foreco.2019.02.003
Laclau JP, Almeida JCR, Gonalves JLM, Saint-Andr L, Ventura M, Ranger J, Moreira RM, Nouvellon Y. 2009) Influence of nitrogen and potassium fertilization on leaf lifespan and allocation of above-ground growth in Eucalyptus plantations. Tree Physiology. 29: 111–124. DOI: 10.1093/treephys/tpn010
Latifah S, Muhdi M, Purwoko A, Tanjung E. 2018. Estimation of aboveground tree biomass Toona sureni and Coffea arabica in agroforestry system of Simalungun, North Sumatra, Indonesia. Biodiversitas. 19: 620–625. DOI: 10.13057/biodiv/d190239
Lewis JD, Phillips NG, Logan BA, Hricko CR, Tissue DT. 2011. Leaf photosynthesis, respiration and stomatal conductance in six Eucalyptus species native to mesic and xeric environments growing in a common garden. Tree Physiology. 31: 997–1006. DOI: 10.1093/treephys/tpr087
Li G, Zhang Z, Shi L, Zhou Y, Yang M, Cao J (2018). Effects of different grazing intensities on soil C , N , and P in an Alpine Meadow on the Qinghai — Tibetan. International Journal of Environmental Research and Public Health. 15: 1–16. DOI: 10.3390/ijerph15112584
Lima PR, Malavasi UC, Battistus AG, Dranski JAL, De Matos Malavasi M. 2019. Photosynthetic responses of eucalyptus seedlings submitted to chemical and mechanical stimulus. Ciencia Florestal. 29: 740–753. DOI: 10.5902/1980509830685
Little KM, Ahtikoski A, Morris AR, Little KM, Ahtikoski A, Rotation-end ARM, Little KM, Ahtikoski A, Morris AR. 2018. Rotation-end financial performance of vegetation control on Eucalyptus smithii in South Africa smithii in South Africa. Southern Forests. 80: 241–250. DOI: 10.2989/20702620.2017.1341114
Magalhães TM, Cossa VN, Guedes BS, Fanheiro ASM. 2020. Species-specific biomass allometric models and expansion factors for indigenous and planted forests of the Mozambique highlands. Journal of Forestry Research. DOI: 10.1007/s11676-020-01156-0
Maimunah S, Rahman SA, Samsudin YB, Artati Y, Simamora TI, Andini S, Lee SM, Baral H. 2018. Assessment of suitability of tree species for bioenergy production on burned and degraded peatlands in Central Kalimantan, Indonesia. Land. 7: 1–14. DOI: 10.3390/land7040115
McTague JP, Weiskittel AR. 2016. Individual-tree competition indices and improved compatibility with stand-level estimates of stem density and long-term production. Forests. 7: 1–16. DOI: 10.3390/f7100238
Nambiar EKS, Harwood CE, Mendham DS. 2018. Paths to sustainable wood supply to the pulp and paper industry in Indonesia after diseases have forced a change of species from acacia to eucalypts. Australian Forestry. 81: 148–161. DOI: 10.1080/00049158.2018.1482798
Nandini R, Narendra BH. 2017. Critical land characteristics of former eruption of Batur Mount in Bangli District, Bali. Jurnal Penelitian Hutan dan Konservasi Alam. 9: 199–211. DOI: 10.20886/jphka.2012.9.3.199-211
Nguyen TT, Arndt SK, Baker PJ. 2019. Leaf physiological responses to drought stress and community assembly in an Asian Savanna. Forests. 10: 15–17. DOI: 10.3390/f10121119
Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L. 2012. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist. 193: 30–50. DOI: 10.1111/j.1469-8137.2011.03952.x
Prasetyo A, Aiso H, Ishiguri F, Wahyudi I, Wijaya IPG, Ohshima J, Yokota S. 2017. Variations on growth characteristics and wood properties of three Eucalyptus species planted for pulpwood in Indonesia. Tropics. 26: 59–69. DOI: 10.3759/tropics.ms16-15
Pretzsch H, Biber P, Uhl E, Dahlhausen J, Rötzer T, Caldentey J, Koike T, van Con T, Chavanne A, Seifert T, Toit B du, Farnden C, Pauleit S. 2015. Crown size and growing space requirement of common tree species in urban centres, parks, and forests. Urban Forestry and Urban Greening. 14: 466–479. DOI: 10.1016/j.ufug.2015.04.006
Rance SJ, Mendham DS, Cameron DM. 2017. Assessment of crown woody biomass in Eucalyptus grandis and E. globulus plantations. New Forests. 48: 381–396. DOI: 10.1007/s11056-016-9563-3
Rosbakh S, Römermann C, Poschlod P (2015). Specific leaf area correlates with temperature: new evidence of trait variation at the population, species and community levels. Alpine Botany. 125: 79–86. DOI: 10.1007/s00035-015-0150-6
Sadono R, Wardhana W, Wirabuana PYAP, Idris F. 2021a. Allometric equations for estimating aboveground biomass of Eucalytpus urophylla S.T. Blake in East Nusa Tenggara. Journal of Tropical Forest Management. 27: 24–31. DOI: 10.7226/jtfm.27.1.24
Sadono R, Wardhana W, Wirabuana PYAP, Idris F. 2021b. Soil chemical properties influences on the growth performance of Eucalyptus urophylla planted in dryland ecosystems, East Nusa Tenggara. Journal of Degraded and Mining Lands Management. 8: 2635–2642. DOI: 10.15243/jdmlm.2021.082.2635
Sasaki N, Asner GP, Pan Y, Knorr W, Durst PB, Ma HO, Abe I, Lowe AJ, Koh LP, Putz FE. 2016. Sustainable management of tropical forests can reduce carbon emissions and stabilize timber production. Frontiers in Environmental Science. 4: 1–13. DOI: 10.3389/fenvs.2016.00050
Simetti R, Bonduelle GM, Silva DA da, Mayer SLS, Souza HP, Muniz GIB de. 2018. Production of biomass and energy stock for five Eucalyptus species. Revista Ciência Da Madeira - RCM. 9: 30–36. DOI: 10.12953/2177-6830/rcm.v9n1p30-36
Stanturf JA, Vance ED, Fox TR, Kirst M. 2013. Eucalyptus beyond its native range: environmental issues in exotic bioenergy plantations. International Journal of Forestry Research. 2013: 1–5. DOI: 10.1155/2013/463030
Stuepp CA, Kratz D, Gabira MM, Wendling I. 2020. Survival and initial growth in the field of eucalyptus seedlings produced in different substrates. Pesquisa Agropecuaria Brasileira. 55: 1–12. DOI: 10.1590/S1678-3921.pab2020.v55.01587
Thompson IM. 2013. Early growth results of three Eucalyptus grandis × Eucalyptus nitens hybrid clonal trials and their response to snow events. Southern Forests. 75: 185–188. DOI: 10.2989/20702620.2013.820446
Truax B, Fortier J, Gagnon D, Lambert F. 2018. Planting density and site effects on stem dimensions, stand productivity, biomass partitioning, carbon stocks and soil nutrient supply in hybrid poplar plantations. Forests. 9: 1–21. DOI: 10.3390/f9060293
Van Bich N, Mendham D, Evans KJ, Dong TL, Hai VD, Van Thanh H, Mohammed CL. 2019. Effect of residue management and fertiliser application on the productivity of a Eucalyptus hybrid and Acacia mangium planted on sloping terrain in northern Vietnam. Southern Forests. 81: 201–212. DOI: 10.2989/20702620.2018.1555940
Versini A, Zeller B, Derrien D, Mazoumbou J, Laclau J. 2014. The role of harvest residues to sustain tree growth and soil nitrogen stocks in a tropical Eucalyptus plantation. 245–260. DOI: 10.1007/s11104-013-1963-y
Viera M, Rodríguez-Soalleiro R. 2019. A complete assessment of carbon stocks in above and belowground biomass components of a hybrid eucalyptus plantation in Southern Brazil. Forests. 10: 1–12. DOI: 10.3390/f10070536
Visser L, Hoefnagels R, Junginger M. 2020. The potential contribution of imported biomass to renewable energy targets in the EU-the trade-off between ambitious greenhouse gas emission reduction targets and cost thresholds. Energies. 13: 1–30. DOI: 10.3390/en13071761
Wirabuana PYAP, Sadono R, Juniarso S, Idris F. 2020a. Interaction of fertilization and weed control influences on growth , biomass , and carbon in eucalyptus hybrid (E. pellita × E. brassiana ). Journal of Tropical Forest Management. 26: 144–154. DOI: 10.7226/jtfm.26.2.144
Wirabuana PYAP, Sadono R, Jurniarso S. 2019. Fertilization effects on early growth, aboveground biomass, carbon storage, and leaf characteristics of Eucalyptus pellita F.Muell. in South Sumatra. ournal of Tropical Forest Management. 25: 154–163. DOI: 10.7226/jtfm.25.3.154
Wirabuana PYAP, Setiahadi R, Sadono R, Lukito M, Martono DS, Matatula J. 2020b. Allometric equations for estimating biomass of community forest tree species in Madiun , Indonesia. Biodiversitas. 21: 4291–4300. DOI: 10.13057/biodiv/d210947
Xiao CW, Janssens IA, Curiel Yuste J, Ceulemans R. 2006. Variation of specific leaf area and upscaling to leaf area index in mature Scots pine. Trees. 20: 304–310. DOI: 10.1007/s00468-005-0039-x
Xie Y, Wang X, Silander JA. 2015. Deciduous forest responses to temperature, precipitation, and drought imply complex climate change impacts. Proceedings of the National Academy of Sciences of the United States of America. 112: 13585–13590. DOI: 10.1073/pnas.1509991112
Zhu W, Xiang W, Pan Q, Zeng Y, Ouyang S, Lei P, Deng X, Fang X, Peng C. 2016. Spatial and seasonal variations of leaf area index (LAI) in subtropical secondary forests related to floristic composition and stand characters. Biogeosciences. 13: 3819–3831. DOI: 10.5194/bg-13-3819-2016

Most read articles by the same author(s)

1 2 > >>