Evaluation of indigenous fungal entomopathogens and aqueous leaf extract of Annona muricata against Polyphagotarsonemus latus infesting Jatropha curcas in Indonesia

##plugins.themes.bootstrap3.article.main##

RETNO DYAH PUSPITARINI
AMINUDIN AFANDHI
ITO FERNANDO

Abstract

Abstract. Puspitarini RD, Afandhi A, Fernando I. 2021. Evaluation of indigenous fungal entomopathogens and aqueous leaf extract of Annona muricata against Polyphagotarsonemus latus infesting Jatropha curcas in Indonesia. Biodiversitas 22: 2648-2655. The broad mite Polyphagotarsonemus latus (Banks) (Acari: Tarsonemidae) has been known to cause a great deal of injury on Jatropha curcas (L.) plantation in Indonesia. Isolation of indigenous fungal entomopathogens from rhizosphere soils, followed by pathogenicity assay was conducted to find an effective isolate for controlling P. latus. Additionally, the potential combination of the selected isolate and soursop (Annona muricata L.) aqueous leaf extract (SLE) was investigated. A total of 24 isolates were obtained by using the insect bait method. Four fungal isolates, namely Paecilomyces sp. 1., Lecanicillium sp., Beauveria sp., and Fusarium sp. 1, showed high conidial viability and were chosen as representatives to assess their pathogenicity against P. latus. Among the tested isolates, Beauveria sp. which had the highest conidial viability among the tested isolates, needed a shorter period to completely kill the tested mites. However, the compatibility test revealed the deleterious effect of SLE on Beauveria sp. SLE at all concentrations showed a very toxic effect on the fungus, therefore the two must be applied separately. Our results provide useful information on the effectiveness of indigenous entomopathogenic fungi Beauveria sp. and aqueous leaf extract of A. muricata as an alternative tool to control the broad mite P. latus on the J. curcas plantation.

##plugins.themes.bootstrap3.article.details##

References
Adeoye OT, Ewete FK. 2010. Potentials of Annona muricata Linnaeus (Annonaceae) as a botanical insecticide against Callosobruchus maculatus Fabricius (Coleoptera: Bruchidae). Journal of Agriculture, Forestry and the Social Sciences 8(2): 147-151.
Alves SB, Tamai MA, Rossi L, Castiglioni E. 2005. Beauveria bassiana pathogenicity to the citrus rust mite Phyllocoptruta oleivora. Experimental and Applied Acrology 37(1-2): 117-122. DOI: https://doi.org/10.1007/s10493-005-0314-y
Asmanizar, Djamin A, Idris AB. 2012. Evaluation of Jatropha curcas and Annona muricate seed crude extracts against Sitophilus zeamais infesting stored rice. Journal of Entomology 9(1): 13-22. DOI: https://doi.org/10.3923/je.2012.13.22
Baral NE, Neupane P, Ale BB, Quiroz-Arita C, Manandhar S, Bradley TH. 2020. Stochastic economic and environmental footprints of biodiesel production from Jatropha curcas Linnaeus in the different federal states of Nepal. Renewable and Sustainable Energy Reviews 120, 109619. DOI: https://doi.org/10.1016/j.rser.2019.109619
Bermejo A, Figadere B, Zafra-Polo MC, Barrachina I, Estornell E, Cortes D. 2005. Acetogenins from Annonaceae: recent progress in isolation, synthesis and mechanisms of action. Natural Product Reports 22(2): 269-303. DOI: https://doi.org/10.1039/b500186m
Bruck DJ. (2004). Natural occurrence of entomopathogens in Pacific Northwest nursery soils and their virulence to the black vine weevil, Otiorhynchus sulcatus (F.) (Coleoptera Curculionidae). Journal of Environmental Entomology 33: 1335-1343. DOI: https://doi.org/10.1603/0046-225X-33.5.1335
de Assis CPO, Gondim Jr. MGC, de Siquiera HAA, da Câmara CAG. 2011. Toxicity of essential oils from plants towards Tyrophagus putrescentiae (Schrank) and Suidasia pontifica Oudemans (Acari: Astigmata). Journal of Stored Products Research 47: 311-315. DOI: https://doi.org/10.1016/j.jspr.2011.04.005
Das NG, Goswami D, Rabha B. 2007. Preliminary evaluation of mosquito larvicidal efficacy of plant extracts. Journal of Vector Born Diseases 44: 145-148.
Depieri RA, Martinez SS, Menezes Jr. AO. 2005. Compatibility of the fungus Beauveria bassiana (Bals.) Vuill. (Deuteromycetes) with extracts of neem seeds and leaves and the emulsible oil. Neotropical Entomology 34(4): 601-606. DOI https://doi.org/10.1590/S1519-566X2005000400010
Domsch KH, Gams W, Anderson TH. 2007. Compendium of Soul Fungi. IHW-Verlag and Verlagsbuchhandlung.
Faria M, Lopes RB, Souza DA, Wraight SP. 2015. Conidial vigor vs. viability as predictors of virulence of entomopathogenic fungi. Journal of Invertebrate Pathology, 125: 68-72. https://doi.org/10.1016/j.jip.2014.12.012
Ferreira CBS, Andrade FHN, Rodrigues ARS, Siquiera HAA, Gondim Jr. MGC. 2015. Resistance in field populations of Tetranychus urticae to acaricides and characterization of the inheritance of abamectin resistance. Crop Protection 67: 77-83. DOI: https://doi.org/10.1016/j.cropro.2014.09.022
Gerson U. 1992. Biology and control of the broad mite, Polyphagotarsonemus latus (Banks) (Acari: Tarsonemidae). Experimental and Applied Acarology 13: 163-178. DOI: https://doi.org/10.1007/BF01194934
Herlinda S. 2010. Spore density and viability of entomopathogenic fungal isolates from Indonesia, and their virulence against Aphis gossypii Glover (Homoptera: Aphididae). Tropical Life Sciences Research 21(1): 11-19.
Hernández MM, Martínez-Villar E, Peace C, Pérez-Moreno I, Marco V. 2012. Compatibility of the entomopathogenic fungus Beauveria bassiana with flufenoxuron and azaridacthin against Tetranychus urticae. Experimental and Applied Acarology 58(4): 395-405. DOI: https://doi.org/10.1007/s10493-012-9594-1
Isman MB. 2006. Botanical insecticides, deterrents, and repellnets in modern agriculture and an increasingly regulated world. Annual Reviews of Entomology 51: 45-66. DOI: https://doi.org/10.1146/annurev.ento.51.110104.151146
Jin X, Hayes CK, Harman GE. 1992. Principles in the development of biological control systems employing Trichoderma species against soil-borne plant pathogenic fungi. In: Leatham, G.F. (Ed.), Frontiers in Industrial Mycology. Chapman & Hall, New York, NY, pp. 174–195.
Lama AD, Klemola T, Saloniemi I, Niemelä P, Vuorisalo T. 2018. Factors affecting genetic and seed yield variability of Jatropha curcas (L.) across the globe: A review. Energy for Sustainable Development 42, 170-182. DOI: https://doi.org/10.1016/j.esd.2017.09.002
Leatemia JA, Isman, M. B. (2004). Insecticidal activity of crude seed extracts of Annona spp., Lansium domesticum and Sandoricum koetjape against lepidopteran larvae. Phytoparasitica, 31(1), 30-37. https://doi.org/10.1007/BF02980856
Lofego AC, Rezende?JM, Verona?RLC, Feres RJF. (2013). Mites (Acari) associated with three species of the genus Jatropha (Euphorbiaceae) in Brazil, with emphasis on Jatropha curcas. Systematic and Applied Acarology, 18(4): 411-423. https://doi.org/10.11158/saa.18.4.10
Martins CC, Alves LFA., Mamprim AP, Souza LPA. 2016. Selection and characterization of Beauveria spp. isolates to control the broad mite Polyphagotarsonemus latus (Banks, 1904) (Acari: Tarsonemidae). Brazilian Journal of Biology, 76(3): 629-637. DOI’ https://doi.org/10.1590/1519-6984.22614
Maryam A, Omoy TR, Mulyana T. 2004. Evaluation of botanical insecticide against Palpita unionalis on melati. Proceeding of the Florikultura National Seminar, Aug. 4-5, Bogor, Indonesia, 386-391.
Mascarin GM, Lopes RB, Delaliber Jr. Í, Fernandes ÉVK, Luz C, Faria M. 2019. Current status and perspectives of fungal entomopathogens used for microbial control of arthropod pests in Brazil. Journal of Invertebrate Pathology 165, 46-53. DOI: https://doi.org/10.1016/j.jip.2018.01.001
Meftaul IM, Venkateswarlu K, Dharmarajan R, Annamalai P, Megharaj M. 2020. Pesticides in the urban environment: A potential threat that knocks at the door. Science of The Total Environment, 711, 134612. DOI: https://doi.org/10.1016/j.scitotenv.2019.134612
Mills NJ, Beers EH, Shearer PW, Unruh TR, Amarasekare KG. 2016. Comparative analysis of pesticide effects on natural enemies in western orchards: A synthesis of laboratory bioassay data. Biological Control 102: 17-25. DOI: https://doi.org/10.1016/j.biocontrol.2015.05.006
Moghadamtousi SZ, Fadaeinasab M, Nikzad S, Mohan G, Ali HM, Kadir HA. 2015. Annona muricata (Annonaceae): A review of its traditional uses, isolated acetogenins and biological activities. International Journal of Molecular Sciences 16(7): 15625-15658. DOI: https://doi.org/10.3390/ijms160715625
Nugroho I, Ibrahim YB. 2004. Bioassay of some entomopathogenic fungi against broad mite (Polyphagotarsonemus latus Banks). International Journal of Agriculture and Biology 6: 223-225.
Ntaribi T, Paul DI. 2018. Status of Jatropha plants farming for biodiesel production in Rwanda. Energy for Sustainable Development 47: 133-142. DOI: https://doi.org/10.1016/j.esd.2018.09.009
Oliveira DGP, Pauli G, Mascarin GM, Delalibera I. 2015. A protocol for determination of conidial viability of the fungal entomopathogens Beauveria bassiana and Metarhizium anisopliae from ommercial products. Journal of Microbiological Methods 119: 44-52. DOI: https://doi.org/10.1016/j.mimet.2015.09.021
Quesada-Moraga E, Navas-Cortes JA, Maranhao EAA, Ortiz-Urquiza A, Santiago-Alvarez C. 2007. Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and cultivated soils. Mycological Research 111, 947-966. DOI: https://doi.org/10.1016/j.mycres.2007.06.006
Rameshgar F, Khajehali J, Nauen R, Dermauw W, van Leeuwen T. 2019. Characterization of abamectin resistance in Iranian populations of European red mite, Panonychus ulmi Koch (Acari: Tetranychidae). Crop Protection 125: 104903. DOI: https://doi.org/10.1016/j.cropro.2019.104903
Ravaomanarivo LHR, Razafindraleva HA, Raharimala FN, Rasoahantaveloniaina B, Ravelonandro PH, Mavingui P. 2014. Efficacy of seed extracts of Annona squamosa and Annona muricata (Annonaceae) for the control of Aedes albopictus and Culex quinquefasciatus (Culicidae). Asian Pacific Journal of Tropical Biomedicine 4(10): 798-806. DOI: https://doi.org/10.12980/APJTB.4.2014C1264
Ribeiro LP, Blume E, Bogorni PC, Dequech STB, Brand SC, Junges E. 2012. Compatibility of Beauveria bassiana commercial isolate with botanical insecticides utilized in organic crops in southern Brazil. Biological Agriculture & Horticulture: An International Journal for Sustainable Production Systems 28(4): 223-240. DOI: http://dx.doi.org/10.1080/01448765.2012.735088
Ribeiro LP, Akhtar Y, Vendramim JD, Isman MB. 2014. Comparative bioactivity of selected seed extracts from Brazilian Annona species and an acetogenin-based commercial bioinsecticide against Trichoplusiani and Myzus persicae. Crop Protection 62, 100-106. DOI: https://doi.org/10.1016/j.cropro.2014.04.013
Rosado JF, Picanço MC, Sarmento RA, da Silva RS, Pedro-Neto M, Carvalho MA, Erasmo EA, Silva LC. 2015. Seasonal variation in the populations of Polyphagotarsonemus latus and Tetranychus bastosi in physic nut (Jatropha curcas) plantations. Experimental and Applied Acarology 66(3): 415-426. DOI: https://doi.org/10.1007/s10493-015-9911-6
Rosado JF, Sarmento RA, Pedro-Neto M, Galdino TV, Marques RV, Erasmo EA, Picanço MC. 2014. Sampling plans for pest mites on physic nut. Experimental and Applied Acarology 63(4), 521-534. DOI: https://doi.org/10.1007/s10493-014-9804-0
Rossi-Zalaf LS, Alves SB. 2006. Susceptibility of Brevipalpus phoenicis to entomopathogenic fungi. Experimental and Applied Acarology 40(1): 37-47. DOI: https://doi.org/10.1007/s10493-006-9024-3
Sahayaraj K, Namasivayam, SKJ, Rathi JM. 2011. Compatibility of entomopathogenic fungi with extracts of plants and commercial botanicals. African Journal of Biotechnology 6: 933-938.
Sánchez-Peña SR, Lara SJ, Medina RF. 2011. Occurrence of entomopathogenic fungi from agricultural and natural ecosystems in Saltillo, Mexico, amd their virulence towards thrips and whiteflies. Journal of Insect Science 11: 1-10. DOI: https://doi.org/10.1673/031.011.010110.1673/031.011.0101
Sarmento RA, Rodrigues DM, Faraji F, Erasmo EA, Lemos F, Teodoro AV, Kikuchi WT, do Santos GR, Pallini A. 2011. Suitability of the predatory mites Iphiseiodes zuluagai and Euseius concordis in controlling Polyphagotarsonemus latus and Tetranychus bastosi on Jatropha curcas plants in Brazil. Experimental and Applied Acarology 53(3): 203-214. DOI: https://doi.org/10.1007/s10493-010-9396-2
Scott IM, Jensen HR, Philogène BJR, Arnason JT. 2008. A review of Piper spp. (Piperaceae) phytochemistry, insecticidal activity and mode of action. Phytochemistry Reviews 7, 65-75. DOI: https://doi.org/10.1007/s11101-006-9058-5
Sharma L, Oliveira I, Torres L, Marques G. 2018. Entomopathogenic fungi in Portuguese vineyards soils: suggesting a ‘Galleria-Tenebrio-bait method’ as bait-insects Galleria and Tenebrio significantly underestimate the respective recoveries of Metarhizium (roberstii) and Beauveria (bassiana). MycoKeys 38: 1-23. DOI: https://doi.org/10.3897/mycokeys.38.26790
Shi WB, Feng MG. 2004. Lethal effect of Beauveria bassiana, Metarhizium anisopliae, and Paecilomyces fumosoroseus on the eggs of Tetranychus cinnabarinus (Acari: Tetranychidae) with a description of a mite egg bioassay system. Biological control 30(2): 165-173. DOI: https://doi.org/10.1016/j.biocontrol.2004.01.017
Sidibe S, Blin J, Daho T, Vaitilingom G, Koulidiati J. 2020. Comparative study of three ways of using Jatropha curcas vegetable oil in a direct injection diesel engine. Scientific African, In Press, Journla Pre-proof. DOI: https://doi.org/10.1016/j.sciaf.2020.e00290
Silitonga AS, Atabani AE, Mahlia TMI, Masjuki HH, Badruddin IA, Mekhilef S. 2011. A review on prospect of Jatropha curcas for biodiesel in Indonesia. Renewable and Sustainable Energy Reviews 15(8): 3733-3756. DOI: https://doi.org/10.1016/j.rser.2011.07.011
Streinbürk J, Tavakkol S, Francis G, Bockhorn H. 2019. Jatropha – Potential of biomass steam processing to convert crop residues to bio-coal and thus triple the marketable energy output per unit plantation area. Industrial Crops and Produts 136, 59-65. DOI: https://doi.org/10.1016/j.indcrop.2019.04.065
van Leeuwen T, Tirry L, Yamamoto A, Nauen R, Dermauw W. 2015. The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pesticide Biochemistry and Physiology 121, 12-21. DOI: https://doi.org/10.1016/j.pestbp.2014.12.009
Vänninen I, Tyni-Juslin J, Hokkanen H. Persistence of augmented Metarhizium anisopliae and Beauveria bassiana in Finnish agricultural soil. Biocontrol 45: 201-222. DOI: https://doi.org/10.1023/A:1009998919531
Venzon M, Rosado MC, Molina-Rugama AJ, Duarte VS, Dias R, Pallini A. 2008. Acaricidal efficacy of neem against Polyphagotarsonemus latus (Banks) (Acari: Tarsonemidae). Crop Protection 27: 869-872. DOI: https://doi.org/10.1016/j.cropro.2007.10.001
Weintraub PG, Kleitman S, Mori R, Shapira N, Palevsky E. 2003. Control of the broad mite (Polyphagotarsonemus latus (Banks)) on organic greenhouse sweet peppers (Capsicum annuum L.) with the predatory mite, Neoseiulus cucumeris (Oudemans). Biological Control 27(3): 300-309. DOI: https://doi.org/10.1016/S1049-9644(03)00069-0
Wu S, Xie H, Li M, Xu X, Lei Z. 2016. Highly virulent Beauveria bassiana strains against the two-spotted spider mite, Tetranychus urticae, show no pathogenicity against five phytoseiid mite species. Experimental and Applied Acarology 70(4): 421-435. DOI: https://doi.org/10.1007/s10493-016-0090-x
Xavier-Santos S, Lopes RB, Faria M. 2011. Emulsifiable oils protect Metarhizium robertsii and Metarhizium pingshaense conidia from imbibitional damage. Biological Control 59(2): 261-267. DOI: https://doi.org/10.1016/j.biocontrol.2011.08.003
Xiao G, Ying SH, Zheng P, Wang ZL, Zhang S, ZXie XQ, Shang Y, St. Leger RJ, Zhao GP, Wang C, Feng MG. 2012. Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Scientific Reports 2: 1-10. DOI: https://doi.org/10.1038/srep00483

Most read articles by the same author(s)